Progenitor cell

Last updated
Neural progenitors (green) in olfactory bulb with astrocytes (blue). Neural progenitors in olfactory bulb.tif
Neural progenitors (green) in olfactory bulb with astrocytes (blue).
Example of the pattern of division of a progenitor cell (PC) which results in the production of an intermediate progenitor cell (IPC). Both cells later produce one or two neural cells (N). Intermediate Progenitor Cell Lineage.png
Example of the pattern of division of a progenitor cell (PC) which results in the production of an intermediate progenitor cell (IPC). Both cells later produce one or two neural cells (N).

A progenitor cell is a biological cell that can differentiate into a specific cell type. Stem cells and progenitor cells have this ability in common. However, stem cells are less specified than progenitor cells. Progenitor cells can only differentiate into their "target" cell type. [1] The most important difference between stem cells and progenitor cells is that stem cells can replicate indefinitely, whereas progenitor cells can divide only a limited number of times. Controversy about the exact definition remains and the concept is still evolving. [2]

Contents

The terms "progenitor cell" and "stem cell" are sometimes equated. [3]

Properties

Most progenitors are identified as oligopotent. In this point of view, they can compare to adult stem cells, but progenitors are said to be in a further stage of cell differentiation. They are "midway" between stem cells and fully differentiated cells. The kind of potency they have depends on the type of their "parent" stem cell and also on their niche. Some research found that progenitor cells were mobile and that these progenitor cells could move through the body and migrate towards the tissue where they are needed. [4] Many properties are shared by adult stem cells and progenitor cells.

Research

Progenitor cells have become a hub for research on a few different fronts. Current research on progenitor cells focuses on two different applications: regenerative medicine and cancer biology. Research on regenerative medicine has focused on progenitor cells, and stem cells, because their cellular senescence contributes largely to the process of aging. [5] Research on cancer biology focuses on the impact of progenitor cells on cancer responses, and the way that these cells tie into the immune response. [6]

The natural aging of cells, called their cellular senescence, is one of the main contributors to aging on an organismal level. [7] There are a few different ideas to the cause behind why aging happens on a cellular level. Telomere length has been shown to positively correlate to longevity. [8] [9] Increased circulation of progenitor cells in the body has also positively correlated to increased longevity and regenerative processes. [10] Endothelial progenitor cells (EPCs) are one of the main focuses of this field. They are valuable cells because they directly precede endothelial cells, but have characteristics of stem cells. These cells can produce differentiated cells to replenish the supply lost in the natural process of aging, which makes them a target for aging therapy research. [11] This field of regenerative medicine and aging research is still currently evolving.

Recent studies have shown that haematopoietic progenitor cells contribute to immune responses in the body. They have been shown to respond a range of inflammatory cytokines. They also contribute to fighting infections by providing a renewal of the depleted resources caused by the stress of an infection on the immune system. Inflammatory cytokines and other factors released during infections will activate haematopoietic progenitor cells to differentiate to replenish the lost resources. [12]

Examples

The characterization or the defining principle of progenitor cells, in order to separate them from others, is based on the different cell markers rather than their morphological appearance. [13]

Development of the human cerebral cortices

Before embryonic day 40 (E40), progenitor cells generate other progenitor cells; after that period, progenitor cells produce only dissimilar mesenchymal stem cell daughters. The cells from a single progenitor cell form a proliferative unit that creates one cortical column; these columns contain a variety of neurons with different shapes. [20]

See also

Related Research Articles

<span class="mw-page-title-main">Haematopoiesis</span> Formation of blood cellular components

Haematopoiesis is the formation of blood cellular components. All cellular blood components are derived from haematopoietic stem cells. In a healthy adult human, roughly ten billion to a hundred billion new blood cells are produced per day, in order to maintain steady state levels in the peripheral circulation.

<span class="mw-page-title-main">Stem cell</span> Undifferentiated biological cells that can differentiate into specialized cells

In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of cell in a cell lineage. They are found in both embryonic and adult organisms, but they have slightly different properties in each. They are usually distinguished from progenitor cells, which cannot divide indefinitely, and precursor or blast cells, which are usually committed to differentiating into one cell type.

<span class="mw-page-title-main">Wound healing</span> Series of events that restore integrity to damaged tissue after an injury

Wound healing refers to a living organism's replacement of destroyed or damaged tissue by newly produced tissue.

<span class="mw-page-title-main">Cell therapy</span> Therapy in which cellular material is injected into a patient

Cell therapy is a therapy in which viable cells are injected, grafted or implanted into a patient in order to effectuate a medicinal effect, for example, by transplanting T-cells capable of fighting cancer cells via cell-mediated immunity in the course of immunotherapy, or grafting stem cells to regenerate diseased tissues.

<span class="mw-page-title-main">Adult stem cell</span> Multipotent stem cell in the adult body

Adult stem cells are undifferentiated cells, found throughout the body after development, that multiply by cell division to replenish dying cells and regenerate damaged tissues. Also known as somatic stem cells, they can be found in juvenile, adult animals, and humans, unlike embryonic stem cells.

Stem-cell therapy is the use of stem cells to treat or prevent a disease or condition. As of 2016, the only established therapy using stem cells is hematopoietic stem cell transplantation. This usually takes the form of a bone-marrow transplantation, but the cells can also be derived from umbilical cord blood. Research is underway to develop various sources for stem cells as well as to apply stem-cell treatments for neurodegenerative diseases and conditions such as diabetes and heart disease.

Neuroepithelial cells, or neuroectodermal cells, form the wall of the closed neural tube in early embryonic development. The neuroepithelial cells span the thickness of the tube's wall, connecting with the pial surface and with the ventricular or lumenal surface. They are joined at the lumen of the tube by junctional complexes, where they form a pseudostratified layer of epithelium called neuroepithelium.

<span class="mw-page-title-main">Endothelial stem cell</span> Stem cell in bone marrow that gives rise to endothelial cells

Endothelial stem cells (ESCs) are one of three types of stem cells found in bone marrow. They are multipotent, which describes the ability to give rise to many cell types, whereas a pluripotent stem cell can give rise to all types. ESCs have the characteristic properties of a stem cell: self-renewal and differentiation. These parent stem cells, ESCs, give rise to progenitor cells, which are intermediate stem cells that lose potency. Progenitor stem cells are committed to differentiating along a particular cell developmental pathway. ESCs will eventually produce endothelial cells (ECs), which create the thin-walled endothelium that lines the inner surface of blood vessels and lymphatic vessels. The lymphatic vessels include things such as arteries and veins. Endothelial cells can be found throughout the whole vascular system and they also play a vital role in the movement of white blood cells

Neural stem cells (NSCs) are self-renewing, multipotent cells that firstly generate the radial glial progenitor cells that generate the neurons and glia of the nervous system of all animals during embryonic development. Some neural progenitor stem cells persist in highly restricted regions in the adult vertebrate brain and continue to produce neurons throughout life. Differences in the size of the central nervous system are among the most important distinctions between the species and thus mutations in the genes that regulate the size of the neural stem cell compartment are among the most important drivers of vertebrate evolution.

<span class="mw-page-title-main">Subventricular zone</span> Region outside each lateral ventricle of the brain

The subventricular zone (SVZ) is a region situated on the outside wall of each lateral ventricle of the vertebrate brain. It is present in both the embryonic and adult brain. In embryonic life, the SVZ refers to a secondary proliferative zone containing neural progenitor cells, which divide to produce neurons in the process of neurogenesis. The primary neural stem cells of the brain and spinal cord, termed radial glial cells, instead reside in the ventricular zone (VZ).

<span class="mw-page-title-main">Nestin (protein)</span> Protein-coding gene in the species Homo sapiens

Nestin is a protein that in humans is encoded by the NES gene.

<span class="mw-page-title-main">Müller glia</span> Glial cell type in the retina

Müller glia, or Müller cells, are a type of retinal glial cells, first recognized and described by Heinrich Müller. They are found in the vertebrate retina, where they serve as support cells for the neurons, as all glial cells do. They are the most common type of glial cell found in the retina. While their cell bodies are located in the inner nuclear layer of the retina, they span across the entire retina.

<span class="mw-page-title-main">GDF11</span> Protein-coding gene in humans

Growth differentiation factor 11 (GDF11) also known as bone morphogenetic protein 11 (BMP-11) is a protein that in humans is encoded by the growth differentiation factor 11 gene. GDF11 is a member of the Transforming growth factor beta family.

<span class="mw-page-title-main">Subgranular zone</span>

The subgranular zone (SGZ) is a brain region in the hippocampus where adult neurogenesis occurs. The other major site of adult neurogenesis is the subventricular zone (SVZ) in the brain.

<span class="mw-page-title-main">Colony stimulating factor 1 receptor</span> Protein found in humans

Colony stimulating factor 1 receptor (CSF1R), also known as macrophage colony-stimulating factor receptor (M-CSFR), and CD115, is a cell-surface protein encoded by the human CSF1R gene. CSF1R is a receptor that can be activated by two ligands: colony stimulating factor 1 (CSF-1) and interleukin-34 (IL-34). CSF1R is highly expressed in myeloid cells, and CSF1R signaling is necessary for the survival, proliferation, and differentiation of many myeloid cell types in vivo and in vitro. CSF1R signaling is involved in many diseases and is targeted in therapies for cancer, neurodegeneration, and inflammatory bone diseases.

<span class="mw-page-title-main">Precursor cell</span> Partially differentiated usually unipotent cell

In cell biology, precursor cells—also called blast cells—are partially differentiated, or intermediate, and are sometimes referred to as progenitor cells. A precursor cell is a stem cell with the capacity to differentiate into only one cell type, meaning they are unipotent stem cells. In embryology, precursor cells are a group of cells that later differentiate into one organ. However, progenitor cells are considered multipotent.

<span class="mw-page-title-main">Mesenchymal stem cell</span> Multipotent, non-hematopoietic adult stem cells present in multiple tissues

Mesenchymal stem cells (MSCs) also known as mesenchymal stromal cells or medicinal signaling cells are multipotent stromal cells that can differentiate into a variety of cell types, including osteoblasts, chondrocytes, myocytes and adipocytes.

Adult mesenchymal stem cells are being used by researchers in the fields of regenerative medicine and tissue engineering to artificially reconstruct human tissue which has been previously damaged. Mesenchymal stem cells are able to differentiate, or mature from a less specialized cell to a more specialized cell type, to replace damaged tissues in various organs.

Endogenous regeneration in the brain is the ability of cells to engage in the repair and regeneration process. While the brain has a limited capacity for regeneration, endogenous neural stem cells, as well as numerous pro-regenerative molecules, can participate in replacing and repairing damaged or diseased neurons and glial cells. Another benefit that can be achieved by using endogenous regeneration could be avoiding an immune response from the host.

Induced stem cells (iSC) are stem cells derived from somatic, reproductive, pluripotent or other cell types by deliberate epigenetic reprogramming. They are classified as either totipotent (iTC), pluripotent (iPSC) or progenitor or unipotent – (iUSC) according to their developmental potential and degree of dedifferentiation. Progenitors are obtained by so-called direct reprogramming or directed differentiation and are also called induced somatic stem cells.

References

  1. Lawrence BE, Horton PM (2013). Progenitor Cells : Biology, Characterization and Potential Clinical Applications. Nova Science Publishers, Inc. p. 26.
  2. Seaberg RM, van der Kooy D (March 2003). "Stem and progenitor cells: the premature desertion of rigorous definitions". Trends in Neurosciences. 26 (3): 125–31. doi:10.1016/S0166-2236(03)00031-6. PMID   12591214. S2CID   18639810.
  3. " progenitor cell " at Dorland's Medical Dictionary
  4. Badami, Chirag D.; Livingston, David H.; Sifri, Ziad C.; Caputo, Francis J.; Bonilla, Larissa; Mohr, Alicia M.; Deitch, Edwin A. (September 2007). "Hematopoietic Progenitor Cells Mobilize to the Site of Injury After Trauma and Hemorrhagic Shock in Rats". Journal of Trauma-Injury Infection & Critical Care. 63 (3): 596–602. doi:10.1097/TA.0b013e318142d231. ISSN   0022-5282. PMID   18073606.
  5. Ahmed AS, Sheng MH, Wasnik S, Baylink DJ, Lau KW (February 2017). "Effect of aging on stem cells". World Journal of Experimental Medicine. 7 (1): 1–10. doi: 10.5493/wjem.v7.i1.1 . PMC   5316899 . PMID   28261550.
  6. Wildes TJ, Flores CT, Mitchell DA (February 2019). "Concise Review: Modulating Cancer Immunity with Hematopoietic Stem and Progenitor Cells". Stem Cells. 37 (2): 166–175. doi: 10.1002/stem.2933 . PMC   6368859 . PMID   30353618.
  7. Gilbert, Scott F.; Barresi, Michael J. F. (15 June 2016). Developmental biology (Eleventh ed.). Sunderland, Massachusetts: Sinauer. ISBN   978-1-60535-470-5. OCLC   945169933.
  8. Boccardi V, Herbig U (August 2012). "Telomerase gene therapy: a novel approach to combat aging". EMBO Molecular Medicine. 4 (8): 685–7. doi: 10.1002/emmm.201200246 . PMC   3494068 . PMID   22585424.
  9. Bernardes de Jesus B, Vera E, Schneeberger K, Tejera AM, Ayuso E, Bosch F, Blasco MA (August 2012). "Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer". EMBO Molecular Medicine. 4 (8): 691–704. doi: 10.1002/emmm.201200245 . PMC   3494070 . PMID   22585399.
  10. Biehl JK, Russell B (March 2009). "Introduction to stem cell therapy". The Journal of Cardiovascular Nursing. 24 (2): 98–103, quiz 104–5. doi:10.1097/JCN.0b013e318197a6a5. PMC   4104807 . PMID   19242274.
  11. Balistreri CR (2017). Endothelial progenitor cells : a new real hope?. Cham: Springer. ISBN   978-3-319-55107-4. OCLC   988870936.
  12. King KY, Goodell MA (September 2011). "Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response". Nature Reviews. Immunology. 11 (10): 685–92. doi:10.1038/nri3062. PMC   4154310 . PMID   21904387.
  13. Morgan JE, Partridge TA (August 2003). "Muscle satellite cells". The International Journal of Biochemistry & Cell Biology. 35 (8): 1151–6. doi:10.1016/s1357-2725(03)00042-6. PMID   12757751.
  14. Noctor SC, Martínez-Cerdeño V, Kriegstein AR (May 2007). "Contribution of intermediate progenitor cells to cortical histogenesis". Archives of Neurology. 64 (5): 639–42. doi: 10.1001/archneur.64.5.639 . PMID   17502462.
  15. 1 2 Awong G, Zuniga-Pflucker JC (June 2011). "Thymus-bound: the many features of T cell progenitors". Frontiers in Bioscience. 3 (3): 961–9. doi:10.2741/200. PMID   21622245.
  16. Barber CL, Iruela-Arispe ML (April 2006). "The ever-elusive endothelial progenitor cell: identities, functions and clinical implications". Pediatric Research. 59 (4 Pt 2): 26R–32R. doi: 10.1203/01.pdr.0000203553.46471.18 . PMID   16549545.
  17. Carotta S, Nutt SL (March 2008). "Losing B cell identity". BioEssays. 30 (3): 203–7. doi:10.1002/bies.20725. PMID   18293359.
  18. Monk KR, Feltri ML, Taveggia C (2015). "New insights on Schwann cell development". Glia. 63 (8): 1376–93. doi:10.1002/glia.22852. PMC   4470834 . PMID   25921593.
  19. Aggarwal, T; Hoeber, J; Ivert, P; Vasylovska, S; Kozlova, EN (July 2017). "Boundary Cap Neural Crest Stem Cells Promote Survival of Mutant SOD1 Motor Neurons". Neurotherapeutics. 14 (3): 773–783. doi:10.1007/s13311-016-0505-8. PMC   5509618 . PMID   28070746.
  20. Mason JO, Price DJ (October 2016). "Building brains in a dish: Prospects for growing cerebral organoids from stem cells". Neuroscience. 334: 105–118. doi: 10.1016/j.neuroscience.2016.07.048 . PMID   27506142.