Neural stem cell

Last updated
Neural stem cell
Details
System Nervous system
Identifiers
Latin cellula nervosa praecursoria
MeSH D058953
TH H2.00.01.0.00010
FMA 86684
Anatomical terms of microanatomy

Neural stem cells (NSCs) are self-renewing, multipotent cells that firstly generate the radial glial progenitor cells that generate the neurons and glia of the nervous system of all animals during embryonic development. [1] Some neural progenitor stem cells persist in highly restricted regions in the adult vertebrate brain and continue to produce neurons throughout life. Differences in the size of the central nervous system are among the most important distinctions between the species and thus mutations in the genes that regulate the size of the neural stem cell compartment are among the most important drivers of vertebrate evolution. [2]

Contents

Stem cells are characterized by their capacity to differentiate into multiple cell types. [3] They undergo symmetric or asymmetric cell division into two daughter cells. In symmetric cell division, both daughter cells are also stem cells. In asymmetric division, a stem cell produces one stem cell and one specialized cell. [4] NSCs primarily differentiate into neurons, astrocytes, and oligodendrocytes.

Brain location

In the adult mammalian brain, the subgranular zone in the hippocampal dentate gyrus, the subventricular zone around the lateral ventricles, and the hypothalamus (precisely in the dorsal α1, α2 region and the "hypothalamic proliferative region”, located in the adjacent median eminence) have been reported to contain neural stem cells. [5]

Development

In vivo origin

Neural stem cells differentiating to astrocytes (green) and sites of growth hormone receptor shown in red Neural Stem Cells and Growth Hormone Receptor.jpg
Neural stem cells differentiating to astrocytes (green) and sites of growth hormone receptor shown in red

There are two basic types of stem cell: adult stem cells, which are limited in their ability to differentiate, and embryonic stem cells (ESCs), which are pluripotent and have the capability of differentiating into any cell type. [3]

Neural stem cells are more specialized than ESCs because they only generate radial glial cells that give rise to the neurons and to glia of the central nervous system (CNS). [4] During the embryonic development of vertebrates, NSCs transition into radial glial cells (RGCs) also known as radial glial progenitor cells, (RGPs) and reside in a transient zone called the ventricular zone (VZ). [1] [6] Neurons are generated in large numbers by (RGPs) during a specific period of embryonic development through the process of neurogenesis, and continue to be generated in adult life in restricted regions of the adult brain. [7] Adult NSCs differentiate into new neurons within the adult subventricular zone (SVZ), a remnant of the embryonic germinal neuroepithelium, as well as the dentate gyrus of the hippocampus. [7]

In vitro origin

Adult NSCs were first isolated from mouse striatum in the early 1990s. They are capable of forming multipotent neurospheres when cultured in vitro . Neurospheres can produce self-renewing and proliferating specialized cells. These neurospheres can differentiate to form the specified neurons, glial cells, and oligodendrocytes. [7] In previous studies, cultured neurospheres have been transplanted into the brains of immunodeficient neonatal mice and have shown engraftment, proliferation, and neural differentiation. [7]

Communication and migration

NSCs are stimulated to begin differentiation via exogenous cues from the microenvironment, or stem cell niche. Some neural cells are migrated from the SVZ along the rostral migratory stream which contains a marrow-like structure with ependymal cells and astrocytes when stimulated. The ependymal cells and astrocytes form glial tubes used by migrating neuroblasts. The astrocytes in the tubes provide support for the migrating cells as well as insulation from electrical and chemical signals released from surrounding cells. The astrocytes are the primary precursors for rapid cell amplification. The neuroblasts form tight chains and migrate towards the specified site of cell damage to repair or replace neural cells. One example is a neuroblast migrating towards the olfactory bulb to differentiate into periglomercular or granule neurons which have a radial migration pattern rather than a tangential one. [8]

Aging

Neural stem cell proliferation declines as a consequence of aging. [9] Various approaches have been taken to counteract this age-related decline. [10] Because FOX proteins regulate neural stem cell homeostasis, [11] FOX proteins have been used to protect neural stem cells by inhibiting Wnt signaling. [12]

Function

Epidermal growth factor (EGF) and fibroblast growth factor (FGF) are mitogens that promote neural progenitor and stem cell growth in vitro, though other factors synthesized by the neural progenitor and stem cell populations are also required for optimal growth. [13] It is hypothesized that neurogenesis in the adult brain originates from NSCs. The origin and identity of NSCs in the adult brain remain to be defined.

During differentiation

The most widely accepted model of an adult NSC is a radial, glial fibrillary acidic protein-positive cell. Quiescent stem cells are Type B that are able to remain in the quiescent state due to the renewable tissue provided by the specific niches composed of blood vessels, astrocytes, microglia, ependymal cells, and extracellular matrix present within the brain. These niches provide nourishment, structural support, and protection for the stem cells until they are activated by external stimuli. Once activated, the Type B cells develop into Type C cells, active proliferating intermediate cells, which then divide into neuroblasts consisting of Type A cells. The undifferentiated neuroblasts form chains that migrate and develop into mature neurons. In the olfactory bulb, they mature into GABAergic granule neurons, while in the hippocampus they mature into dentate granule cells. [14]

Epigenetic modification

Epigenetic modifications are important regulators of gene expression in differentiating neural stem cells. Key epigenetic modifications include DNA cytosine methylation to form 5-methylcytosine and 5-methylcytosine demethylation. [15] [16] These types of modification are critical for cell fate determination in the developing and adult mammalian brain.

DNA cytosine methylation is catalyzed by DNA methyltransferases (DNMTs). Methylcytosine demethylation is catalyzed in several distinct steps by TET enzymes that carry out oxidative reactions (e.g. 5-methylcytosine to 5-hydroxymethylcytosine) and enzymes of the DNA base excision repair (BER) pathway. [15]

During disease

NSCs have an important role during development producing the enormous diversity of neurons, astrocytes and oligodendrocytes in the developing CNS. They also have important role in adult animals, for instance in learning and hippocampal plasticity in the adult mice in addition to supplying neurons to the olfactory bulb in mice. [7]

Notably the role of NSCs during diseases is now being elucidated by several research groups around the world. The responses during stroke, multiple sclerosis, and Parkinson's disease in animal models and humans is part of the current investigation. The results of this ongoing investigation may have future applications to treat human neurological diseases. [7]

Neural stem cells have been shown to engage in migration and replacement of dying neurons in classical experiments performed by Sanjay Magavi and Jeffrey Macklis. [17] Using a laser-induced damage of cortical layers, Magavi showed that SVZ neural progenitors expressing Doublecortin, a critical molecule for migration of neuroblasts, migrated long distances to the area of damage and differentiated into mature neurons expressing NeuN marker. In addition, Masato Nakafuku's group from Japan showed for the first time the role of hippocampal stem cells during stroke in mice. [18] These results demonstrated that NSCs can engage in the adult brain as a result of injury. Furthermore, in 2004 Evan Y. Snyder's group showed that NSCs migrate to brain tumors in a directed fashion. Jaime Imitola, M.D and colleagues from Harvard demonstrated for the first time, a molecular mechanism for the responses of NSCs to injury. They showed that chemokines released during injury such as SDF-1a were responsible for the directed migration of human and mouse NSCs to areas of injury in mice. [19] Since then other molecules have been found to participate in the responses of NSCs to injury. All these results have been widely reproduced and expanded by other investigators joining the classical work of Richard L. Sidman in autoradiography to visualize neurogenesis during development, and neurogenesis in the adult by Joseph Altman in the 1960s, as evidence of the responses of adult NSCs activities and neurogenesis during homeostasis and injury.

The search for additional mechanisms that operate in the injury environment and how they influence the responses of NSCs during acute and chronic disease is matter of intense research. [20]

Research

Regenerative therapy of the CNS

Cell death is a characteristic of acute CNS disorders as well as neurodegenerative disease. The loss of cells is amplified by the lack of regenerative abilities for cell replacement and repair in the CNS. One way to circumvent this is to use cell replacement therapy via regenerative NSCs. NSCs can be cultured in vitro as neurospheres. These neurospheres are composed of neural stem cells and progenitors (NSPCs) with growth factors such as EGF and FGF. The withdrawal of these growth factors activate differentiation into neurons, astrocytes, or oligodendrocytes which can be transplanted within the brain at the site of injury. The benefits of this therapeutic approach have been examined in Parkinson's disease, Huntington's disease, and multiple sclerosis. NSPCs induce neural repair via intrinsic properties of neuroprotection and immunomodulation. Some possible routes of transplantation include intracerebral transplantation and xenotransplantation. [21] [22]

An alternative therapeutic approach to the transplantation of NSPCs is the pharmacological activation of endogenous NSPCs (eNSPCs). Activated eNSPCs produce neurotrophic factors, several treatments that activate a pathway that involves the phosphorylation of STAT3 on the serine residue and subsequent elevation of Hes3 expression (STAT3-Ser/Hes3 Signaling Axis) oppose neuronal death and disease progression in models of neurological disorder. [23] [24]

Generation of 3D in vitro models of the human CNS

Human midbrain-derived neural progenitor cells (hmNPCs) have the ability to differentiate down multiple neural cell lineages that lead to neurospheres as well as multiple neural phenotypes. The hmNPC can be used to develop a 3D in vitro model of the human CNS. There are two ways to culture the hmNPCs, the adherent monolayer and the neurosphere culture systems. The neurosphere culture system has previously been used to isolate and expand CNS stem cells by its ability to aggregate and proliferate hmNPCs under serum-free media conditions as well as with the presence of epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF2). Initially, the hmNPCs were isolated and expanded before performing a 2D differentiation which was used to produce a single-cell suspension. This single-cell suspension helped achieve a homogenous 3D structure of uniform aggregate size. The 3D aggregation formed neurospheres which was used to form an in vitro 3D CNS model. [25]

Bioactive scaffolds as traumatic brain injury treatment

Traumatic brain injury (TBI) can deform the brain tissue, leading to necrosis primary damage which can then cascade and activate secondary damage such as excitotoxicity, inflammation, ischemia, and the breakdown of the blood-brain-barrier. Damage can escalate and eventually lead to apoptosis or cell death. Current treatments focus on preventing further damage by stabilizing bleeding, decreasing intracranial pressure and inflammation, and inhibiting pro-apoptotic cascades. In order to repair TBI damage, an upcoming therapeutic option involves the use of NSCs derived from the embryonic peri-ventricular region. Stem cells can be cultured in a favorable 3-dimensional, low cytotoxic environment, a hydrogel, that will increase NSC survival when injected into TBI patients. The intracerebrally injected, primed NSCs were seen to migrate to damaged tissue and differentiate into oligodendrocytes or neuronal cells that secreted neuroprotective factors. [26] [27]

Galectin-1 in neural stem cells

Galectin-1 is expressed in adult NSCs and has been shown to have a physiological role in the treatment of neurological disorders in animal models. There are two approaches to using NSCs as a therapeutic treatment: (1) stimulate intrinsic NSCs to promote proliferation in order to replace injured tissue, and (2) transplant NSCs into the damaged brain area in order to allow the NSCs to restore the tissue. Lentivirus vectors were used to infect human NSCs (hNSCs) with Galectin-1 which were later transplanted into the damaged tissue. The hGal-1-hNSCs induced better and faster brain recovery of the injured tissue as well as a reduction in motor and sensory deficits as compared to only hNSC transplantation. [8]

Assays

Neural stem cells are routinely studied in vitro using a method referred to as the Neurosphere Assay (or Neurosphere culture system), first developed by Reynolds and Weiss. [28] Neurospheres are intrinsically heterogeneous cellular entities almost entirely formed by a small fraction (1 to 5%) of slowly dividing neural stem cells and by their progeny, a population of fast-dividing nestin-positive progenitor cells. [28] [29] [30] The total number of these progenitors determines the size of a neurosphere and, as a result, disparities in sphere size within different neurosphere populations may reflect alterations in the proliferation, survival and/or differentiation status of their neural progenitors. Indeed, it has been reported that loss of β1-integrin in a neurosphere culture does not significantly affect the capacity of β1-integrin deficient stem cells to form new neurospheres, but it influences the size of the neurosphere: β1-integrin deficient neurospheres were overall smaller due to increased cell death and reduced proliferation. [31]

While the Neurosphere Assay has been the method of choice for isolation, expansion and even the enumeration of neural stem and progenitor cells, several recent publications have highlighted some of the limitations of the neurosphere culture system as a method for determining neural stem cell frequencies. [32] In collaboration with Reynolds, STEMCELL Technologies has developed a collagen-based assay, called the Neural Colony-Forming Cell (NCFC) Assay, for the quantification of neural stem cells. Importantly, this assay allows discrimination between neural stem and progenitor cells. [33]

History

The first evidence that neurogenesis occurs in certain regions of the adult mammalian brain came from [3H]-thymidine labeling studies conducted by Altman and Das in 1965 which showed postnatal hippocampal neurogenesis in young rats. [34] In 1989, Sally Temple described multipotent, self-renewing progenitor and stem cells in the subventricular zone (SVZ) of the mouse brain. [35] In 1992, Brent A. Reynolds and Samuel Weiss were the first to isolate neural progenitor and stem cells from the adult striatal tissue, including the SVZ — one of the neurogenic areas — of adult mice brain tissue. [28] In the same year the team of Constance Cepko and Evan Y. Snyder were the first to isolate multipotent cells from the mouse cerebellum and stably transfected them with the oncogene v-myc. [36] This molecule is one of the genes widely used now to reprogram adult non-stem cells into pluripotent stem cells. Since then, neural progenitor and stem cells have been isolated from various areas of the adult central nervous system, including non-neurogenic areas, such as the spinal cord, and from various species including humans. [37] [38]

See also

Related Research Articles

<span class="mw-page-title-main">Glia</span> Support cells in the nervous system

Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system and the peripheral nervous system that do not produce electrical impulses. The neuroglia make up more than one half the volume of neural tissue in our body. They maintain homeostasis, form myelin in the peripheral nervous system, and provide support and protection for neurons. In the central nervous system, glial cells include oligodendrocytes, astrocytes, ependymal cells and microglia, and in the peripheral nervous system they include Schwann cells and satellite cells.

<span class="mw-page-title-main">Adult neurogenesis</span> Generating of neurons from neural stem cells in adults

Adult neurogenesis is the process in which neurons are generated from neural stem cells in the adult. This process differs from prenatal neurogenesis.

In vertebrates, a neuroblast or primitive nerve cell is a postmitotic cell that does not divide further, and which will develop into a neuron after a migration phase. In invertebrates such as Drosophila, neuroblasts are neural progenitor cells which divide asymmetrically to produce a neuroblast, and a daughter cell of varying potency depending on the type of neuroblast. Vertebrate neuroblasts differentiate from radial glial cells and are committed to becoming neurons. Neural stem cells, which only divide symmetrically to produce more neural stem cells, transition gradually into radial glial cells. Radial glial cells, also called radial glial progenitor cells, divide asymmetrically to produce a neuroblast and another radial glial cell that will re-enter the cell cycle.

<span class="mw-page-title-main">Astrocyte</span> Type of brain cell

Astrocytes, also known collectively as astroglia, are characteristic star-shaped glial cells in the brain and spinal cord. They perform many functions, including biochemical control of endothelial cells that form the blood–brain barrier, provision of nutrients to the nervous tissue, maintenance of extracellular ion balance, regulation of cerebral blood flow, and a role in the repair and scarring process of the brain and spinal cord following infection and traumatic injuries. The proportion of astrocytes in the brain is not well defined; depending on the counting technique used, studies have found that the astrocyte proportion varies by region and ranges from 20% to around 40% of all glia. Another study reports that astrocytes are the most numerous cell type in the brain. Astrocytes are the major source of cholesterol in the central nervous system. Apolipoprotein E transports cholesterol from astrocytes to neurons and other glial cells, regulating cell signaling in the brain. Astrocytes in humans are more than twenty times larger than in rodent brains, and make contact with more than ten times the number of synapses.

Oligodendrocyte progenitor cells (OPCs), also known as oligodendrocyte precursor cells, NG2-glia, O2A cells, or polydendrocytes, are a subtype of glia in the central nervous system named for their essential role as precursors to oligodendrocytes. They are typically identified in the human by co-expression of PDGFRA and CSPG4.

<span class="mw-page-title-main">Rostral migratory stream</span> One path neural stem cells take to reach the olfactory bulb


The rostral migratory stream (RMS) is a specialized migratory route found in the brain of some animals along which neuronal precursors that originated in the subventricular zone (SVZ) of the brain migrate to reach the main olfactory bulb (OB). The importance of the RMS lies in its ability to refine and even change an animal's sensitivity to smells, which explains its importance and larger size in the rodent brain as compared to the human brain, as our olfactory sense is not as developed. This pathway has been studied in the rodent, rabbit, and both the squirrel monkey and rhesus monkey. When the neurons reach the OB they differentiate into GABAergic interneurons as they are integrated into either the granule cell layer or periglomerular layer.

Neuroepithelial cells, or neuroectodermal cells, form the wall of the closed neural tube in early embryonic development. The neuroepithelial cells span the thickness of the tube's wall, connecting with the pial surface and with the ventricular or lumenal surface. They are joined at the lumen of the tube by junctional complexes, where they form a pseudostratified layer of epithelium called neuroepithelium.

<span class="mw-page-title-main">Radial glial cell</span> Bipolar-shaped progenitor cells of all neurons in the cerebral cortex and some glia

Radial glial cells, or radial glial progenitor cells (RGPs), are bipolar-shaped progenitor cells that are responsible for producing all of the neurons in the cerebral cortex. RGPs also produce certain lineages of glia, including astrocytes and oligodendrocytes. Their cell bodies (somata) reside in the embryonic ventricular zone, which lies next to the developing ventricular system.

Neuropoiesis is the process by which neural stem cells differentiate to form mature neurons, astrocytes, and oligodendrocytes in the adult mammal. This process is also referred to as adult neurogenesis.

<span class="mw-page-title-main">Subventricular zone</span> Region outside each lateral ventricle of the brain

The subventricular zone (SVZ) is a region situated on the outside wall of each lateral ventricle of the vertebrate brain. It is present in both the embryonic and adult brain. In embryonic life, the SVZ refers to a secondary proliferative zone containing neural progenitor cells, which divide to produce neurons in the process of neurogenesis. The primary neural stem cells of the brain and spinal cord, termed radial glial cells, instead reside in the ventricular zone (VZ).

A neurosphere is a culture system composed of free-floating clusters of neural stem cells. Neurospheres provide a method to investigate neural precursor cells in vitro. Putative neural stem cells are suspended in a medium lacking adherent substrates but containing necessary growth factors, such as epidermal growth factor and fibroblast growth factor. This allows the neural stem cells to form into characteristic 3-D clusters. However, neurospheres are not identical to stem cells; rather, they only contain a small percentage of neural stem cells.

<span class="mw-page-title-main">Subgranular zone</span>

The subgranular zone (SGZ) is a brain region in the hippocampus where adult neurogenesis occurs. The other major site of adult neurogenesis is the subventricular zone (SVZ) in the brain.

Gliogenesis is the generation of non-neuronal glia populations derived from multipotent neural stem cells.

<span class="mw-page-title-main">Olfactory ensheathing cell</span> Type of macroglia that ensheath unmyelinated olfactory neurons

Olfactory ensheathing cells (OECs), also known as olfactory ensheathing glia or olfactory ensheathing glial cells, are a type of macroglia found in the nervous system. They are also known as olfactory Schwann cells, because they ensheath the non-myelinated axons of olfactory neurons in a similar way to which Schwann cells ensheath non-myelinated peripheral neurons. They also share the property of assisting axonal regeneration.

Endogenous regeneration in the brain is the ability of cells to engage in the repair and regeneration process. While the brain has a limited capacity for regeneration, endogenous neural stem cells, as well as numerous pro-regenerative molecules, can participate in replacing and repairing damaged or diseased neurons and glial cells. Another benefit that can be achieved by using endogenous regeneration could be avoiding an immune response from the host.

Epigenetic regulation of neurogenesis is the role that epigenetics plays in the regulation of neurogenesis.

<span class="mw-page-title-main">Neuronal lineage marker</span> Endogenous tag expressed in different cells along neurogenesis and differentiated cells

A neuronal lineage marker is an endogenous tag that is expressed in different cells along neurogenesis and differentiated cells such as neurons. It allows detection and identification of cells by using different techniques. A neuronal lineage marker can be either DNA, mRNA or RNA expressed in a cell of interest. It can also be a protein tag, as a partial protein, a protein or an epitope that discriminates between different cell types or different states of a common cell. An ideal marker is specific to a given cell type in normal conditions and/or during injury. Cell markers are very valuable tools for examining the function of cells in normal conditions as well as during disease. The discovery of various proteins specific to certain cells led to the production of cell-type-specific antibodies that have been used to identify cells.

<span class="mw-page-title-main">Ventricular zone</span> Transient embryonic layer of tissue containing neural stem cells

In vertebrates, the ventricular zone (VZ) is a transient embryonic layer of tissue containing neural stem cells, principally radial glial cells, of the central nervous system (CNS). The VZ is so named because it lines the ventricular system, which contains cerebrospinal fluid (CSF). The embryonic ventricular system contains growth factors and other nutrients needed for the proper function of neural stem cells. Neurogenesis, or the generation of neurons, occurs in the VZ during embryonic and fetal development as a function of the Notch pathway, and the newborn neurons must migrate substantial distances to their final destination in the developing brain or spinal cord where they will establish neural circuits. A secondary proliferative zone, the subventricular zone (SVZ), lies adjacent to the VZ. In the embryonic cerebral cortex, the SVZ contains intermediate neuronal progenitors that continue to divide into post-mitotic neurons. Through the process of neurogenesis, the parent neural stem cell pool is depleted and the VZ disappears. The balance between the rates of stem cell proliferation and neurogenesis changes during development, and species from mouse to human show large differences in the number of cell cycles, cell cycle length, and other parameters, which is thought to give rise to the large diversity in brain size and structure.

Neurogenesis is the process by which nervous system cells, the neurons, are produced by neural stem cells (NSCs). In short, it is brain growth in relation to its organization. This occurs in all species of animals except the porifera (sponges) and placozoans. Types of NSCs include neuroepithelial cells (NECs), radial glial cells (RGCs), basal progenitors (BPs), intermediate neuronal precursors (INPs), subventricular zone astrocytes, and subgranular zone radial astrocytes, among others.

<span class="mw-page-title-main">Neurogenesis hypothesis of depression</span> Theory of depression

Adult neurogenesis is the process by which functional, mature neurons are produced from neural stem cells (NSCs) in the adult brain. In most mammals, including humans, it only occurs in the subgranular zone of the hippocampus, and in the olfactory bulb. The neurogenesis hypothesis of depression proposes that major depressive disorder is caused, at least partly, by impaired neurogenesis in the subgranular zone of the hippocampus.

References

  1. 1 2 Beattie, R; Hippenmeyer, S (December 2017). "Mechanisms of radial glia progenitor cell lineage progression". FEBS Letters. 591 (24): 3993–4008. doi:10.1002/1873-3468.12906. PMC   5765500 . PMID   29121403.
  2. Liu P, Verhaar AP, Peppelenbosch MP (January 2019). "Signaling Size: Ankyrin and SOCS Box-Containing ASB E3 Ligases in Action". Trends in Biochemical Sciences. 44 (1): 64–74. doi:10.1016/j.tibs.2018.10.003. PMID   30446376. S2CID   53569740.
  3. 1 2 Clarke, D.; Johansson, C; Wilbertz, J; Veress, B; Nilsson, E; Karlstrom, H; Lendahl, U; Frisen, J (2000). "Generalized Potential of Adult Neural Stem Cells". Science. 288 (5471): 1660–63. Bibcode:2000Sci...288.1660C. doi:10.1126/science.288.5471.1660. PMID   10834848.
  4. 1 2 Gilbert, Scott F.; College, Swarthmore; Helsinki, the University of (2014). Developmental biology (Tenth ed.). Sunderland, Mass.: Sinauer. ISBN   978-0878939787.
  5. Andreotti JP, Silva WN, Costa AC, Picoli CC, Bitencourt FC, Coimbra-Campos LM, Resende RR, Magno LA, Romano-Silva MA, Mintz A, Birbrair A (2019). "Neural stem cell niche heterogeneity". Semin Cell Dev Biol. 95: 42–53. doi:10.1016/j.semcdb.2019.01.005. PMC   6710163 . PMID   30639325.
  6. Rakic, P (October 2009). "Evolution of the neocortex: a perspective from developmental biology". Nature Reviews. Neuroscience. 10 (10): 724–35. doi:10.1038/nrn2719. PMC   2913577 . PMID   19763105.
  7. 1 2 3 4 5 6 Paspala, S; Murthy, T; Mahaboob, V; Habeeb, M (2011). "Pluripotent stem cells – A review of the current status in neural regeneration". Neurology India. 59 (4): 558–65. doi: 10.4103/0028-3886.84338 . PMID   21891934.
  8. 1 2 Sakaguchi, M; Okano, H (2012). "Neural stem cells, adult neurogenesis, and galectin-1: From bench to bedside". Developmental Neurobiology. 72 (7): 1059–67. doi:10.1002/dneu.22023. PMID   22488739. S2CID   41548939.
  9. Kuhn HG, Dickinson-Anson H, Gage FH (1996). "Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation". Journal of Neuroscience . 16 (6): 2027–2033. doi:10.1523/JNEUROSCI.16-06-02027.1996. PMC   6578509 . PMID   8604047.
  10. Artegiani B, Calegari F; Calegari (2012). "Age-related cognitive decline: can neural stem cells help us?". Aging. 4 (3): 176–186. doi:10.18632/aging.100446. PMC   3348478 . PMID   22466406.
  11. Renault VM, Rafalski VA, Morgan AA, Salih DA, Brett JO, Webb AE, Villeda SA, Thekkat PU, Guillerey C, Denko NC, Palmer TD, Butte AJ, Brunet A (2009). "FoxO3 regulates neural stem cell homeostasis". Cell Stem Cell. 5 (5): 527–539. doi:10.1016/j.stem.2009.09.014. PMC   2775802 . PMID   19896443.
  12. Paik JH, Ding Z, Narurkar R, Ramkissoon S, Muller F, Kamoun WS, Chae SS, Zheng H, Ying H, Mahoney J, Hiller D, Jiang S, Protopopov A, Wong WH, Chin L, Ligon KL, DePinho RA (2009). "FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis". Cell Stem Cell. 5 (5): 540–553. doi:10.1016/j.stem.2009.09.013. PMC   3285492 . PMID   19896444.
  13. Taupin, Philippe; Ray, Jasodhara; Fischer, Wolfgang H; Suhr, Steven T; Hakansson, Katarina; Grubb, Anders; Gage, Fred H (2000). "FGF-2-Responsive Neural Stem Cell Proliferation Requires CCg, a Novel Autocrine/Paracrine Cofactor". Neuron. 28 (2): 385–97. doi: 10.1016/S0896-6273(00)00119-7 . PMID   11144350. S2CID   16322048.
  14. Bergstrom, T; Forsbery-Nilsson, K (2012). "Neural stem cells: Brain building blocks and beyond". Upsala Journal of Medical Sciences. 117 (2): 132–42. doi:10.3109/03009734.2012.665096. PMC   3339545 . PMID   22512245.
  15. 1 2 Wang, Z; Tang, B; He, Y; Jin, P (Mar 2016). "DNA methylation dynamics in neurogenesis". Epigenomics. 8 (3): 401–14. doi:10.2217/epi.15.119. PMC   4864063 . PMID   26950681.
  16. Noack, F; Pataskar, A; Schneider, M; Buchholz, F; Tiwari, VK; Calegari, F (2019). "Assessment and site-specific manipulation of DNA (hydroxy-)methylation during mouse corticogenesis". Life Sci Alliance. 2 (2): e201900331. doi:10.26508/lsa.201900331. PMC   6394126 . PMID   30814272.
  17. MacKlis, Jeffrey D.; Magavi, Sanjay S.; Leavitt, Blair R. (2000). "Induction of neurogenesis in the neocortex of adult mice". Nature. 405 (6789): 951–5. Bibcode:2000Natur.405..951M. doi:10.1038/35016083. PMID   10879536. S2CID   4416694.
  18. Nakatomi, Hirofumi; Kuriu, Toshihiko; Okabe, Shigeo; Yamamoto, Shin-Ichi; Hatano, Osamu; Kawahara, Nobutaka; Tamura, Akira; Kirino, Takaaki; Nakafuku, Masato (2002). "Regeneration of Hippocampal Pyramidal Neurons after Ischemic Brain Injury by Recruitment of Endogenous Neural Progenitors". Cell. 110 (4): 429–41. doi: 10.1016/S0092-8674(02)00862-0 . PMID   12202033. S2CID   15438187.
  19. Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, Khoury SJ (December 28, 2004). "Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway". Proc. Natl. Acad. Sci. U.S.A. 101 (52): 18117–22. Bibcode:2004PNAS..10118117I. doi: 10.1073/pnas.0408258102 . PMC   536055 . PMID   15608062.
  20. Sohur US, US.; Emsley JG; Mitchell BD; Macklis JD. (September 29, 2006). "Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells". Philosophical Transactions of the Royal Society of London B. 361 (1473): 1477–97. doi:10.1098/rstb.2006.1887. PMC   1664671 . PMID   16939970.
  21. Bonnamain, V; Neveu, I; Naveilhan, P (2012). "Neural stem/progenitor cells as promising candidates for regenerative therapy of the central nervous system". Frontiers in Cellular Neuroscience. 6: 17. doi: 10.3389/fncel.2012.00017 . PMC   3323829 . PMID   22514520.
  22. Xu, X; Warrington, A; Bieber, A; Rodriguez, M (2012). "Enhancing Central Nervous System Repair-The Challenges". CNS Drugs. 25 (7): 555–73. doi:10.2165/11587830-000000000-00000. PMC   3140701 . PMID   21699269.
  23. Androutsellis-Theotokis A, et al. (August 2006). "Notch signalling regulates stem cell numbers in vitro and in vivo". Nature. 442 (7104): 823–6. Bibcode:2006Natur.442..823A. doi:10.1038/nature04940. PMID   16799564. S2CID   4372065.
  24. Androutsellis-Theotokis A, et al. (August 2009). "Targeting neural precursors in the adult brain rescues injured dopamine neurons". Proc. Natl. Acad. Sci. U.S.A. 106 (32): 13570–5. Bibcode:2009PNAS..10613570A. doi: 10.1073/pnas.0905125106 . PMC   2714762 . PMID   19628689.
  25. Brito, C; Simao, D; Costa, I; Malpique, R; Pereira, C; Fernandes, P; Serra, M; Schwarz, S; Schwarz, J; Kremer, E; Alves, P (2012). "Generation and genetic modification of 3D cultures of human dopaminergic neurons derived from neural progenitor cells". Methods. 56 (3): 452–60. doi:10.1016/j.ymeth.2012.03.005. PMID   22433395.
  26. Stabenfeldt, S; Irons, H; LaPlace, M (2011). "Stem Cells and Bioactive Scaffolds as a Treatment for Traumatic Brain Injury". Current Stem Cell Research & Therapy. 6 (3): 208–20. doi:10.2174/157488811796575396. PMID   21476977.
  27. Ratajczak, J; Zuba-Surma, E; Paczkowska, K; Kucia, M; Nowacki, P; Ratajczak, MZ (2011). "Stem cells for neural regeneration--a potential application of very small embryonic-like stem cells". J. Physiol. Pharmacol. 62 (1): 3–12. PMID   21451204.
  28. 1 2 3 Reynolds, B.; Weiss, S (1992). "Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system". Science. 255 (5052): 1707–10. Bibcode:1992Sci...255.1707R. doi:10.1126/science.1553558. PMID   1553558. S2CID   17905159.
  29. Campos, L. S.; Leone, DP; Relvas, JB; Brakebusch, C; Fässler, R; Suter, U; Ffrench-Constant, C (2004). "β1 integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance". Development. 131 (14): 3433–44. doi: 10.1242/dev.01199 . PMID   15226259.
  30. Lobo, M. V. T.; Alonso, F. J. M.; Redondo, C.; Lopez-Toledano, M. A.; Caso, E.; Herranz, A. S.; Paino, C. L.; Reimers, D.; Bazan, E. (2003). "Cellular Characterization of Epidermal Growth Factor-expanded Free-floating Neurospheres". Journal of Histochemistry & Cytochemistry. 51 (1): 89–103. doi: 10.1177/002215540305100111 . PMID   12502758.
  31. Leone, D. P.; Relvas, JB; Campos, LS; Hemmi, S; Brakebusch, C; Fässler, R; Ffrench-Constant, C; Suter, U (2005). "Regulation of neural progenitor proliferation and survival by β1 integrins". Journal of Cell Science. 118 (12): 2589–99. doi:10.1242/jcs.02396. PMID   15928047.
  32. Singec, Ilyas; Knoth, Rolf; Meyer, Ralf P; MacIaczyk, Jaroslaw; Volk, Benedikt; Nikkhah, Guido; Frotscher, Michael; Snyder, Evan Y (2006). "Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology". Nature Methods. 3 (10): 801–6. doi:10.1038/nmeth926. PMID   16990812. S2CID   6925259.
  33. Louis, Sharon A.; Rietze, Rodney L.; Deleyrolle, Loic; Wagey, Ravenska E.; Thomas, Terry E.; Eaves, Allen C.; Reynolds, Brent A. (2008). "Enumeration of Neural Stem and Progenitor Cells in the Neural Colony-Forming Cell Assay". Stem Cells. 26 (4): 988–96. doi: 10.1634/stemcells.2007-0867 . PMID   18218818. S2CID   21935724.
  34. Altman, Joseph; Das, Gopal D. (1965-06-01). "Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats". The Journal of Comparative Neurology. 124 (3): 319–335. doi:10.1002/cne.901240303. ISSN   1096-9861. PMID   5861717. S2CID   14121873.
  35. Temple, S (1989). "Division and differentiation of isolated CNS blast cells in microculture". Nature. 340 (6233): 471–73. Bibcode:1989Natur.340..471T. doi:10.1038/340471a0. PMID   2755510. S2CID   4364792.
  36. Snyder, Evan Y.; Deitcher, David L.; Walsh, Christopher; Arnold-Aldea, Susan; Hartwieg, Erika A.; Cepko, Constance L. (1992). "Multipotent neural cell lines can engraft and participate in development of mouse cerebellum". Cell. 68 (1): 33–51. doi:10.1016/0092-8674(92)90204-P. PMID   1732063. S2CID   44695465.
  37. Zigova, Tanja; Sanberg, Paul R.; Sanchez-Ramos, Juan Raymond, eds. (2002). Neural stem cells: methods and protocols . Humana Press. ISBN   978-0-89603-964-3 . Retrieved 18 April 2010.[ page needed ]
  38. Taupin, Philippe; Gage, Fred H. (2002). "Adult neurogenesis and neural stem cells of the central nervous system in mammals". Journal of Neuroscience Research. 69 (6): 745–9. doi:10.1002/jnr.10378. PMID   12205667. S2CID   39888988.