DNA methylation

Last updated
DNA methylation.png
Representation of a DNA molecule that is methylated. The two white spheres represent methyl groups. They are bound to two cytosine nucleotide molecules that make up the DNA sequence. DNA methylation.jpg
Representation of a DNA molecule that is methylated. The two white spheres represent methyl groups. They are bound to two cytosine nucleotide molecules that make up the DNA sequence.

DNA methylation is a process by which methyl groups are added to the DNA molecule. Methylation can change the activity of a DNA segment without changing the sequence. When located in a gene promoter, DNA methylation typically acts to repress gene transcription. In mammals DNA methylation is essential for normal development and is associated with a number of key processes including genomic imprinting, X-chromosome inactivation, repression of transposable elements, aging, and carcinogenesis.

A methyl group is an alkyl derived from methane, containing one carbon atom bonded to three hydrogen atoms — CH3. In formulas, the group is often abbreviated Me. Such hydrocarbon groups occur in many organic compounds. It is a very stable group in most molecules. While the methyl group is usually part of a larger molecule, it can be found on its own in any of three forms: anion, cation or radical. The anion has eight valence electrons, the radical seven and the cation six. All three forms are highly reactive and rarely observed.

Promoter (genetics) a region of DNA that initiates transcription of a particular gene

In genetics, a promoter is a region of DNA that initiates transcription of a particular gene. Promoters are located near the transcription start sites of genes, on the same strand and upstream on the DNA . Promoters can be about 100–1000 base pairs long.

Genomic imprinting is an epigenetic phenomenon that causes genes to be expressed in a parent-of-origin-specific manner. Forms of genomic imprinting have been demonstrated in fungi, plants and animals. As of 2014, there are about 150 imprinted genes known in the mouse and about half that in humans.

Contents

Two of DNA's four bases, cytosine and adenine, can be methylated. Cytosine methylation is widespread in both eukaryotes and prokaryotes, even though the rate of cytosine DNA methylation can differ greatly between species: 14% of cytosines are methylated in Arabidopsis thaliana , 8% in Physarum, [1] 4% in Mus musculus , 2.3% in Escherichia coli , 0.03% in Drosophila , 0.006% in Dictyostelium [2] and virtually none (< 0.0002%) in Caenorhabditis [3] or yeast species such as Saccharomyces cerevisiae and S. pombe (but not N. crassa). [4] [5] Adenine methylation has been observed in bacterial, plant, and recently in mammalian DNA, [6] [7] but has received considerably less attention.

Cytosine chemical compound

Cytosine is one of the four main bases found in DNA and RNA, along with adenine, guanine, and thymine. It is a pyrimidine derivative, with a heterocyclic aromatic ring and two substituents attached. The nucleoside of cytosine is cytidine. In Watson-Crick base pairing, it forms three(3) hydrogen bonds with guanine.

Adenine chemical compound

Adenine is a nucleobase. It is one of the four nucleobases in the nucleic acid of DNA that are represented by the letters G–C–A–T. The three others are guanine, cytosine and thymine. Its derivatives have a variety of roles in biochemistry including cellular respiration, in the form of both the energy-rich adenosine triphosphate (ATP) and the cofactors nicotinamide adenine dinucleotide (NAD) and flavin adenine dinucleotide (FAD). It also has functions in protein synthesis and as a chemical component of DNA and RNA. The shape of adenine is complementary to either thymine in DNA or uracil in RNA.

<i>Arabidopsis thaliana</i> A species of flowering plants belonging to the mustards, crucifers, and cabbage family, and used as a model organism in plant biology and genetics

Arabidopsis thaliana, the thale cress, mouse-ear cress or arabidopsis, is a small flowering plant native to Eurasia and Africa. A. thaliana is considered a weed; it is found by roadsides and in disturbed land.

Methylation of cytosine to form 5-methylcytosine occurs at the same 5 position on the pyrimidine ring where the DNA base thymine's methyl group is located; the same position distinguishes thymine from the analogous RNA base uracil, which has no methyl group. Spontaneous deamination of 5-methylcytosine converts it to thymine. This results in a T:G mismatch. Repair mechanisms then correct it back to the original C:G pair; alternatively, they may substitute G for A, turning the original C:G pair into an T:A pair, effectively changing a base and introducing a mutation. This misincorporated base will not be corrected during DNA replication as thymine is a DNA base. If the mismatch is not repaired and the cell enters the cell cycle the strand carrying the T will be complemented by an A in one of the daughter cells, such that the mutation becomes permanent. The near-universal replacement of uracil by thymine in DNA, but not RNA, may have evolved as an error-control mechanism, to facilitate the removal of uracils generated by the spontaneous deamination of cytosine. [8] DNA methylation as well as many of its contemporary DNA methyltransferases has been thought to evolve from early world primitive RNA methylation activity and is supported by several lines of evidence. [9]

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. One of the three diazines, it has the nitrogen atoms at positions 1 and 3 in the ring. The other diazines are pyrazine and pyridazine. In nucleic acids, three types of nucleobases are pyrimidine derivatives: cytosine (C), thymine (T), and uracil (U).

Thymine chemical compound

Thymine is one of the four nucleobases in the nucleic acid of DNA that are represented by the letters G–C–A–T. The others are adenine, guanine, and cytosine. Thymine is also known as 5-methyluracil, a pyrimidine nucleobase. In RNA, thymine is replaced by the nucleobase uracil. Thymine was first isolated in 1893 by Albrecht Kossel and Albert Neumann from calves' thymus glands, hence its name.

Uracil chemical compound

Uracil is one of the four nucleobases in the nucleic acid of RNA that are represented by the letters A, G, C and U. The others are adenine (A), cytosine (C), and guanine (G). In RNA, uracil binds to adenine via two hydrogen bonds. In DNA, the uracil nucleobase is replaced by thymine. Uracil is a demethylated form of thymine.

In plants and other organisms, DNA methylation is found in three different sequence contexts: CG (or CpG), CHG or CHH (where H correspond to A, T or C). In mammals however, DNA methylation is almost exclusively found in CpG dinucleotides, with the cytosines on both strands being usually methylated. Non-CpG methylation can however be observed in embryonic stem cells, [10] [11] [12] and has also been indicated in neural development. [13] Furthermore, non-CpG methylation has also been observed in hematopoietic progenitor cells, and it occurred mainly in a CpApC sequence context. [14]

CpG site

The CpG sites or CG sites are regions of DNA where a cytosine nucleotide is followed by a guanine nucleotide in the linear sequence of bases along its 5' → 3' direction. CpG sites occur with high frequency in genomic regions called CpG islands. Cytosines in CpG dinucleotides can be methylated to form 5-methylcytosines. Enzymes that add a methyl group are called DNA methyltransferases. In mammals, 70% to 80% of CpG cytosines are methylated. Methylating the cytosine within a gene can change its expression, a mechanism that is part of a larger field of science studying gene regulation that is called epigenetics.

Stem cell undifferentiated biological cells that can differentiate into specialized cells

Stem cells are cells that can differentiate into other types of cells, and can also divide in self-renewal to produce more of the same type of stem cells.

Conserved function of DNA methylation

Typical DNA methylation landscape in mammals DNAme landscape.png
Typical DNA methylation landscape in mammals

The DNA methylation landscape of vertebrates is very particular compared to other organisms. In vertebrates, around 60–80% of CpG are methylated in somatic cells [15] and DNA methylation appears as a default state that has to be specifically excluded from defined locations. [12] [16] By contrast, the genome of most plants, invertebrates, fungi, or protists show “mosaic” methylation patterns, where only specific genomic elements are targeted, and they are characterized by the alternation of methylated and unmethylated domains. [4] [17]

High CpG methylation in mammalian genomes has an evolutionary cost because it increases the frequency of spontaneous mutations. Loss of amino-groups occurs with a high frequency for cytosines, with different consequences depending on their methylation. Methylated C residues spontaneously deaminate to form T residues over time; hence CpG dinucleotides steadily deaminate to TpG dinucleotides, which is evidenced by the under-representation of CpG dinucleotides in the human genome (they occur at only 21% of the expected frequency). [18] (On the other hand, spontaneous deamination of unmethylated C residues gives rise to U residues, a change that is quickly recognized and repaired by the cell.)

CpG islands

In mammals, the only exception for this global CpG depletion resides in a specific category of GC- and CpG-rich sequences termed CpG islands that are generally unmethylated and therefore retained the expected CpG content. [19] CpG islands are usually defined as regions with 1) a length greater than 200bp, 2) a G+C content greater than 50%, 3) a ratio of observed to expected CpG greater than 0.6, although other definitions are sometimes used. [20] Excluding repeated sequences, there are around 25,000 CpG islands in the human genome, 75% of which being less than 850bp long. [18] They are major regulatory units and around 50% of CpG islands are located in gene promoter regions, while another 25% lie in gene bodies, often serving as alternative promoters. Reciprocally, around 60-70% of human genes have a CpG island in their promoter region. [21] [22] The majority of CpG islands are constitutively unmethylated and enriched for permissive chromatin modification such as H3K4 methylation. In somatic tissues, only 10% of CpG islands are methylated, the majority of them being located in intergenic and intragenic regions.

Repression of CpG-dense promoters

DNA methylation was probably present at some extent in very early eukaryote ancestors. In virtually every organism analyzed, methylation in promoter regions correlates negatively with gene expression. [4] [23] CpG-dense promoters of actively transcribed genes are never methylated, but reciprocally transcriptionally silent genes do not necessarily carry a methylated promoter. In mouse and human, around 60–70% of genes have a CpG island in their promoter region and most of these CpG islands remain unmethylated independently of the transcriptional activity of the gene, in both differentiated and undifferentiated cell types. [24] [25] Of note, whereas DNA methylation of CpG islands is unambiguously linked with transcriptional repression, the function of DNA methylation in CG-poor promoters remains unclear; albeit there is little evidence that it could be functionally relevant. [26]

DNA methylation may affect the transcription of genes in two ways. First, the methylation of DNA itself may physically impede the binding of transcriptional proteins to the gene, [27] and second, and likely more important, methylated DNA may be bound by proteins known as methyl-CpG-binding domain proteins (MBDs). MBD proteins then recruit additional proteins to the locus, such as histone deacetylases and other chromatin remodeling proteins that can modify histones, thereby forming compact, inactive chromatin, termed heterochromatin. This link between DNA methylation and chromatin structure is very important. In particular, loss of methyl-CpG-binding protein 2 (MeCP2) has been implicated in Rett syndrome; and methyl-CpG-binding domain protein 2 (MBD2) mediates the transcriptional silencing of hypermethylated genes in cancer.

Repression of transposable elements

DNA methylation is a powerful transcriptional repressor, at least in CpG dense contexts. Transcriptional repression of protein-coding genes appears essentially limited to very specific classes of genes that need to be silent permanently and in almost all tissues. While DNA methylation does not have the flexibility required for the fine-tuning of gene regulation, its stability is perfect to ensure the permanent silencing of transposable elements. Transposon control is one the most ancient functions of DNA methylation that is shared by animals, plants and multiple protists. [28] It is even suggested that DNA methylation evolved precisely for this purpose. [29]

Methylation of the gene body of highly transcribed genes

A function that appears even more conserved than transposon silencing is positively correlated with gene expression. In almost all species where DNA methylation is present, DNA methylation is especially enriched in the body of highly transcribed genes. [4] [23] The function of gene body methylation is not well understood. A body of evidence suggests that it could regulate splicing [30] and suppress the activity of intragenic transcriptional units (cryptic promoters or transposable elements). [31] Gene-body methylation appears closely tied to H3K36 methylation. In yeast and mammals, H3K36 methylation is highly enriched in the body of highly transcribed genes. In yeast at least, H3K36me3 recruits enzymes such as histone deacetylases to condense chromatin and prevent the activation of cryptic start sites. [32] In mammals, DNMT3a and DNMT3b PWWP domain binds to H3K36me3 and the two enzymes are recruited to the body of actively transcribed genes.

In mammals

Dynamic of DNA methylation during mouse embryonic development. E3.5-E6, etc., refer to days after fertilization. PGC: primordial germ cells DNA methylation reprogramming.png
Dynamic of DNA methylation during mouse embryonic development. E3.5-E6, etc., refer to days after fertilization. PGC: primordial germ cells

During embryonic development

DNA methylation patterns are largely erased and then re-established between generations in mammals. Almost all of the methylations from the parents are erased, first during gametogenesis, and again in early embryogenesis, with demethylation and remethylation occurring each time. Demethylation in early embryogenesis occurs in the preimplantation period in two stages – initially in the zygote, then during the first few embryonic replication cycles of morula and blastula. A wave of methylation then takes place during the implantation stage of the embryo, with CpG islands protected from methylation. This results in global repression and allows housekeeping genes to be expressed in all cells. In the post-implantation stage, methylation patterns are stage- and tissue-specific, with changes that would define each individual cell type lasting stably over a long period. [33]

Whereas DNA methylation is not necessary per se for transcriptional silencing, it is thought nonetheless to represent a “locked” state that definitely inactivates transcription. In particular, DNA methylation appears critical for the maintenance of mono-allelic silencing in the context of genomic imprinting and X chromosome inactivation. [34] [35] In these cases, expressed and silent alleles differ by their methylation status, and loss of DNA methylation results in loss of imprinting and re-expression of Xist in somatic cells. During embryonic development, few genes change their methylation status, at the important exception of many genes specifically expressed in the germline. [36] DNA methylation appears absolutely required in differentiated cells, as knockout of any of the three competent DNA methyltransferase results in embryonic or post-partum lethality. By contrast, DNA methylation is dispensable in undifferentiated cell types, such as the inner cell mass of the blastocyst, primordial germ cells or embryonic stem cells. Since DNA methylation appears to directly regulate only a limited number of genes, how precisely DNA methylation absence causes the death of differentiated cells remain an open question.

Due to the phenomenon of genomic imprinting, maternal and paternal genomes are differentially marked and must be properly reprogrammed every time they pass through the germline. Therefore, during gametogenesis, primordial germ cells must have their original biparental DNA methylation patterns erased and re-established based on the sex of the transmitting parent. After fertilization the paternal and maternal genomes are once again demethylated and remethylated (except for differentially methylated regions associated with imprinted genes). This reprogramming is likely required for totipotency of the newly formed embryo and erasure of acquired epigenetic changes. [37]

In cancer

In many disease processes, such as cancer, gene promoter CpG islands acquire abnormal hypermethylation, which results in transcriptional silencing that can be inherited by daughter cells following cell division. [38] Alterations of DNA methylation have been recognized as an important component of cancer development. Hypomethylation, in general, arises earlier and is linked to chromosomal instability and loss of imprinting, whereas hypermethylation is associated with promoters and can arise secondary to gene (oncogene suppressor) silencing, but might be a target for epigenetic therapy. [39]

Global hypomethylation has also been implicated in the development and progression of cancer through different mechanisms. [40] Typically, there is hypermethylation of tumor suppressor genes and hypomethylation of oncogenes. [41]

Generally, in progression to cancer, hundreds of genes are silenced or activated. Although silencing of some genes in cancers occurs by mutation, a large proportion of carcinogenic gene silencing is a result of altered DNA methylation (see DNA methylation in cancer). DNA methylation causing silencing in cancer typically occurs at multiple CpG sites in the CpG islands that are present in the promoters of protein coding genes.

Altered expressions of microRNAs also silence or activate many genes in progression to cancer (see microRNAs in cancer). Altered microRNA expression occurs through hyper/hypo-methylation of CpG sites in CpG islands in promoters controlling transcription of the microRNAs.

Silencing of DNA repair genes through methylation of CpG islands in their promoters appears to be especially important in progression to cancer (see methylation of DNA repair genes in cancer).

In atherosclerosis

Epigenetic modifications such as DNA methylation have been implicated in cardiovascular disease, including atherosclerosis. In animal models of atherosclerosis, vascular tissue as well as blood cells such as mononuclear blood cells exhibit global hypomethylation with gene-specific areas of hypermethylation. DNA methylation polymorphisms may be used as an early biomarker of atherosclerosis since they are present before lesions are observed, which may provide an early tool for detection and risk prevention. [42]

Two of the cell types targeted for DNA methylation polymorphisms are monocytes and lymphocytes, which experience an overall hypomethylation. One proposed mechanism behind this global hypomethylation is elevated homocysteine levels causing hyperhomocysteinemia, a known risk factor for cardiovascular disease. High plasma levels of homocysteine inhibit DNA methyltransferases, which causes hypomethylation. Hypomethylation of DNA affects gene that alter smooth muscle cell proliferation, cause endothelial cell dysfunction, and increase inflammatory mediators, all of which are critical in forming atherosclerotic lesions. [43] High levels of homocysteine also result in hypermethylation of CpG islands in the promoter region of the estrogen receptor alpha (ERα) gene, causing its down regulation. [44] ERα protects against atherosclerosis due to its action as a growth suppressor, causing the smooth muscle cells to remain in a quiescent state. [45] Hypermethylation of the ERα promoter thus allows intimal smooth muscle cells to proliferate excessively and contribute to the development of the atherosclerotic lesion. [46]

Another gene that experiences a change in methylation status in atherosclerosis is the monocarboxylate transporter (MCT3), which produces a protein responsible for the transport of lactate and other ketone bodies out of many cell types, including vascular smooth muscle cells. In atherosclerosis patients, there is an increase in methylation of the CpG islands in exon 2, which decreases MCT3 protein expression. The down regulation of MCT3 impairs lactate transport, and significantly increases smooth muscle cell proliferation, which further contributes to the atherosclerotic lesion. An ex vivo experiment using the demethylating agent Decitabine (5-aza-2 -deoxycytidine) was shown to induce MCT3 expression in a dose dependant manner, as all hypermethylated sites in the exon 2 CpG island became demethylated after treatment. This may serve as a novel therapeutic agent to treat atherosclerosis, although no human studies have been conducted thus far. [47]

In aging

In humans and other mammals, DNA methylation levels can be used to accurately estimate the age of tissues and cell types, forming an accurate epigenetic clock. [48]

A longitudinal study of twin children showed that, between the ages of 5 and 10, there was divergence of methylation patterns due to environmental rather than genetic influences. [49] There is a global loss of DNA methylation during aging. [41]

In a study that analyzed the complete DNA methylomes of CD4+ T cells in a newborn, a 26 years old individual and a 103 years old individual was observed that the loss of methylation is proportional to age. Hypomethylated CpGs observed in the centenarian DNAs compared with the neonates covered all genomic compartments (promoters, intergenic, intronic and exonic regions). [50] However, some genes become hypermethylated with age, including genes for the estrogen receptor, p16, and insulin-like growth factor 2. [41]

In exercise

High intensity exercise has been shown to result in reduced DNA methylation in skeletal muscle. [51] Promoter methylation of PGC-1α and PDK4 were immediately reduced after high intensity exercise, whereas PPAR-γ methylation was not reduced until three hours after exercise. [51] By contrast, six months of exercise in previously sedentary middle-age men resulted in increased methylation in adipose tissue. [52] One study showed a possible increase in global genomic DNA methylation of white blood cells with more physical activity in non-Hispanics. [53]

In B-cell differentiation

A study that investigated the methylome of B cells along their differentiation cycle, using whole-genome bisulfite sequencing (WGBS), showed that there is a hypomethylation from the earliest stages to the most differentiated stages. The largest methylation difference is between the stages of germinal center B cells and memory B cells. Furthermore, this study showed that there is a similarity between B cell tumors and long-lived B cells in their DNA methylation signatures. [14]

In the brain

Two reviews summarize evidence that DNA methylation alterations in brain neurons are important in learning and memory. [54] [55] Contextual fear conditioning (a form of associative learning) in animals, such as mice and rats, is rapid and is extremely robust in creating memories. [56] In mice [57] and in rats [58] contextual fear conditioning, within 1-24 hours, it is associated with altered methylations of several thousand DNA cytosines in genes of hippocampus neurons. Twenty four hours after contextual fear conditioning, 9.2% of the genes in rat hippocampus neurons are differentially methylated. [58] In mice, [57] when examined at four weeks after conditioning, the hippocampus methylations and demethylations had been reset to the original naive conditions. The hippocampus is needed to form memories, but memories are not stored there. For such mice, at four weeks after contextual fear conditioning, substantial differential CpG methylations and demethylations occurred in cortical neurons during memory maintenance, and there were 1,223 differentially methylated genes in their anterior cingulate cortex. [57] Active changes in neuronal DNA methylation and demethylation appear to act as controllers of synaptic scaling and glutamate receptor trafficking in learning and memory formation. [54]

DNA methyltransferases (in mammals)

Possible pathways of cytosine methylation and demethylation. Abbreviations: S-Adenosyl-L-homocysteine (SAH), S-adenosyl-L-methionine (SAM), DNA methyltransferase (DNA MTase), Uracil-DNA glycosylase (UNG) DNA methylation (corrected).png
Possible pathways of cytosine methylation and demethylation. Abbreviations: S-Adenosyl-L-homocysteine (SAH), S-adenosyl-L-methionine (SAM), DNA methyltransferase (DNA MTase), Uracil-DNA glycosylase (UNG)

In mammalian cells, DNA methylation occurs mainly at the C5 position of CpG dinucleotides and is carried out by two general classes of enzymatic activities – maintenance methylation and de novo methylation. [59]

Maintenance methylation activity is necessary to preserve DNA methylation after every cellular DNA replication cycle. Without the DNA methyltransferase (DNMT), the replication machinery itself would produce daughter strands that are unmethylated and, over time, would lead to passive demethylation. DNMT1 is the proposed maintenance methyltransferase that is responsible for copying DNA methylation patterns to the daughter strands during DNA replication. Mouse models with both copies of DNMT1 deleted are embryonic lethal at approximately day 9, due to the requirement of DNMT1 activity for development in mammalian cells.

It is thought that DNMT3a and DNMT3b are the de novo methyltransferases that set up DNA methylation patterns early in development. DNMT3L is a protein that is homologous to the other DNMT3s but has no catalytic activity. Instead, DNMT3L assists the de novo methyltransferases by increasing their ability to bind to DNA and stimulating their activity. Mice and rats have a third functional de novo methyltransferase enzyme named DNMT3C, which evolved as a paralog of Dnmt3b by tandem duplication in the common ancestral of Muroidea rodents. DNMT3C catalyzes the methylation of promoters of transposable elements during early spermatogenesis, an activity shown to be essential for their epigenetic repression and male fertility. [60] [61] It is yet unclear if in other mammals that do not have DNMT3C (like humans) rely on DNMT3B or DNMT3A for de novo methylation of transposable elements in the germline. Finally, DNMT2 (TRDMT1) has been identified as a DNA methyltransferase homolog, containing all 10 sequence motifs common to all DNA methyltransferases; however, DNMT2 (TRDMT1) does not methylate DNA but instead methylates cytosine-38 in the anticodon loop of aspartic acid transfer RNA. [62]

Since many tumor suppressor genes are silenced by DNA methylation during carcinogenesis, there have been attempts to re-express these genes by inhibiting the DNMTs. 5-Aza-2'-deoxycytidine (decitabine) is a nucleoside analog that inhibits DNMTs by trapping them in a covalent complex on DNA by preventing the β-elimination step of catalysis, thus resulting in the enzymes' degradation. However, for decitabine to be active, it must be incorporated into the genome of the cell, which can cause mutations in the daughter cells if the cell does not die. In addition, decitabine is toxic to the bone marrow, which limits the size of its therapeutic window. These pitfalls have led to the development of antisense RNA therapies that target the DNMTs by degrading their mRNAs and preventing their translation. However, it is currently unclear whether targeting DNMT1 alone is sufficient to reactivate tumor suppressor genes silenced by DNA methylation.

In plants

Significant progress has been made in understanding DNA methylation in the model plant Arabidopsis thaliana . DNA methylation in plants differs from that of mammals: while DNA methylation in mammals mainly occurs on the cytosine nucleotide in a CpG site, in plants the cytosine can be methylated at CpG, CpHpG, and CpHpH sites, where H represents any nucleotide but not guanine. Overall, Arabidopsis DNA is highly methylated, mass spectrometry analysis estimated 14% of cytosines to be modified. [5]

The principal Arabidopsis DNA methyltransferase enzymes, which transfer and covalently attach methyl groups onto DNA, are DRM2, MET1, and CMT3. Both the DRM2 and MET1 proteins share significant homology to the mammalian methyltransferases DNMT3 and DNMT1, respectively, whereas the CMT3 protein is unique to the plant kingdom. There are currently two classes of DNA methyltransferases: 1) the de novo class, or enzymes that create new methylation marks on the DNA; and 2) a maintenance class that recognizes the methylation marks on the parental strand of DNA and transfers new methylation to the daughters strands after DNA replication. DRM2 is the only enzyme that has been implicated as a de novo DNA methyltransferase. DRM2 has also been shown, along with MET1 and CMT3 to be involved in maintaining methylation marks through DNA replication. [63] Other DNA methyltransferases are expressed in plants but have no known function (see the Chromatin Database).

It is not clear how the cell determines the locations of de novo DNA methylation, but evidence suggests that, for many (though not all) locations, RNA-directed DNA methylation (RdDM) is involved. In RdDM, specific RNA transcripts are produced from a genomic DNA template, and this RNA forms secondary structures called double-stranded RNA molecules. [64] The double-stranded RNAs, through either the small interfering RNA (siRNA) or microRNA (miRNA) pathways direct de-novo DNA methylation of the original genomic location that produced the RNA. [64] This sort of mechanism is thought to be important in cellular defense against RNA viruses and/or transposons, both of which often form a double-stranded RNA that can be mutagenic to the host genome. By methylating their genomic locations, through an as yet poorly understood mechanism, they are shut off and are no longer active in the cell, protecting the genome from their mutagenic effect. Recently, it was described that methylation of the DNA is the main determinant of embryogenic cultures formation from explants in woody plants and is regarded the main mechanism that explains the poor response of mature explants to somatic embryogenesis in the plants (Isah 2016).

In insects

Functional DNA methylation has been discovered in Honey Bees. [65] [66] DNA methylation marks are mainly on the gene body, and current opinions on the function of DNA methylation is gene regulation via alternative splicing [67]

DNA methylation levels in Drosophila melanogaster are nearly undetectable. [68] Sensitive methods applied to Drosophila DNA Suggest levels in the range of 0.1–0.3% of total cytosine. [69] This low level of methylation [70] appears to reside in genomic sequence patterns that are very different from patterns seen in humans, or in other animal or plant species to date. Genomic methylation in D. melanogaster was found at specific short motifs (concentrated in specific 5-base sequence motifs that are CA- and CT-rich but depleted of guanine) and is independent of DNMT2 activity. Further, highly sensitive mass spectrometry approaches, [71] have now demonstrated the presence of low (0.07%) but significant levels of adenine methylation during the earliest stages of Drosophila embryogenesis.

In fungi

Many fungi have low levels (0.1 to 0.5%) of cytosine methylation, whereas other fungi have as much as 5% of the genome methylated. [72] This value seems to vary both among species and among isolates of the same species. [73] There is also evidence that DNA methylation may be involved in state-specific control of gene expression in fungi.[ citation needed ] However, at a detection limit of 250 attomoles by using ultra-high sensitive mass spectrometry DNA methylation was not confirmed in single cellular yeast species such as Saccharomyces cerevisiae or Schizosaccharomyces pombe , indicating that yeasts do not possess this DNA modification. [5]

Although brewers' yeast ( Saccharomyces ), fission yeast ( Schizosaccharomyces ), and Aspergillus flavus [74] have no detectable DNA methylation, the model filamentous fungus Neurospora crassa has a well-characterized methylation system. [75] Several genes control methylation in Neurospora and mutation of the DNA methyl transferase, dim-2, eliminates all DNA methylation but does not affect growth or sexual reproduction. While the Neurospora genome has very little repeated DNA, half of the methylation occurs in repeated DNA including transposon relics and centromeric DNA. The ability to evaluate other important phenomena in a DNA methylase-deficient genetic background makes Neurospora an important system in which to study DNA methylation.

In other eukaryotes

DNA methylation is largely absent from Dictyostelium discoidium [76] where it appears to occur at about 0.006% of cytosines. [2] In contrast, DNA methylation is widely distributed in Physarum polycephalum [77] where 5-methylcytosine makes up as much as 8% of total cytosine [1]

In bacteria

Adenine or cytosine methylation is part of the restriction modification system of many bacteria, in which specific DNA sequences are methylated periodically throughout the genome. A methylase is the enzyme that recognizes a specific sequence and methylates one of the bases in or near that sequence. Foreign DNAs (which are not methylated in this manner) that are introduced into the cell are degraded by sequence-specific restriction enzymes and cleaved. Bacterial genomic DNA is not recognized by these restriction enzymes. The methylation of native DNA acts as a sort of primitive immune system, allowing the bacteria to protect themselves from infection by bacteriophage.

E. coli DNA adenine methyltransferase (Dam) is an enzyme of ~32 kDa that does not belong to a restriction/modification system. The target recognition sequence for E. coli Dam is GATC, as the methylation occurs at the N6 position of the adenine in this sequence (G meATC). The three base pairs flanking each side of this site also influence DNA–Dam binding. Dam plays several key roles in bacterial processes, including mismatch repair, the timing of DNA replication, and gene expression. As a result of DNA replication, the status of GATC sites in the E. coli genome changes from fully methylated to hemimethylated. This is because adenine introduced into the new DNA strand is unmethylated. Re-methylation occurs within two to four seconds, during which time replication errors in the new strand are repaired. Methylation, or its absence, is the marker that allows the repair apparatus of the cell to differentiate between the template and nascent strands. It has been shown that altering Dam activity in bacteria results in increased spontaneous mutation rate. Bacterial viability is compromised in dam mutants that also lack certain other DNA repair enzymes, providing further evidence for the role of Dam in DNA repair.

One region of the DNA that keeps its hemimethylated status for longer is the origin of replication, which has an abundance of GATC sites. This is central to the bacterial mechanism for timing DNA replication. SeqA binds to the origin of replication, sequestering it and thus preventing methylation. Because hemimethylated origins of replication are inactive, this mechanism limits DNA replication to once per cell cycle.

Expression of certain genes, for example those coding for pilus expression in E. coli, is regulated by the methylation of GATC sites in the promoter region of the gene operon. The cells' environmental conditions just after DNA replication determine whether Dam is blocked from methylating a region proximal to or distal from the promoter region. Once the pattern of methylation has been created, the pilus gene transcription is locked in the on or off position until the DNA is again replicated. In E. coli, these pilus operons have important roles in virulence in urinary tract infections. It has been proposed[ by whom? ] that inhibitors of Dam may function as antibiotics.

On the other hand, DNA cytosine methylase targets CCAGG and CCTGG sites to methylate cytosine at the C5 position (C meC(A/T) GG). The other methylase enzyme, EcoKI, causes methylation of adenines in the sequences AAC(N6)GTGC and GCAC(N6)GTT.

Molecular cloning

Most strains used by molecular biologists are derivatives of E. coli K-12, and possess both Dam and Dcm, but there are commercially available strains that are dam-/dcm- (lack of activity of either methylase). In fact, it is possible to unmethylate the DNA extracted from dam+/dcm+ strains by transforming it into dam-/dcm- strains. This would help digest sequences that are not being recognized by methylation-sensitive restriction enzymes. [78] [79]

The restriction enzyme DpnI can recognize 5'-GmeATC-3' sites and digest the methylated DNA. Being such a short motif, it occurs frequently in sequences by chance, and as such its primary use for researchers is to degrade template DNA following PCRs (PCR products lack methylation, as no methylases are present in the reaction). Similarly, some commercially available restriction enzymes are sensitive to methylation at their cognate restriction sites, and must as mentioned previously be used on DNA passed through a dam-/dcm- strain to allow cutting.

Detection

DNA methylation can be detected by the following assays currently used in scientific research: [80]

Differentially methylated regions (DMRs)

Differentially methylated regions, are genomic regions with different methylation statuses among multiple samples (tissues, cells, individuals or others), are regarded as possible functional regions involved in gene transcriptional regulation. The identification of DMRs among multiple tissues (T-DMRs) provides a comprehensive survey of epigenetic differences among human tissues. [89] For example, these methylated regions that are unique to a particular tissue allow individuals to differentiate between tissue type, such as semen and vaginal fluid. Current research conducted by Lee et al., showed DACT1 and USP49 positively identified semen by examining T-DMRs. [90] The use of T-DMRs has proven useful in the identification of various body fluids found at crime scenes. Researchers in the forensic field are currently seeking novel T-DMRs in genes to use as markers in forensic DNA analysis. DMRs between cancer and normal samples (C-DMRs) demonstrate the aberrant methylation in cancers. [91] It is well known that DNA methylation is associated with cell differentiation and proliferation. [92] Many DMRs have been found in the development stages (D-DMRs) [93] and in the reprogrammed progress (R-DMRs). [94] In addition, there are intra-individual DMRs (Intra-DMRs) with longitudinal changes in global DNA methylation along with the increase of age in a given individual. [95] There are also inter-individual DMRs (Inter-DMRs) with different methylation patterns among multiple individuals. [96]

QDMR (Quantitative Differentially Methylated Regions) is a quantitative approach to quantify methylation difference and identify DMRs from genome-wide methylation profiles by adapting Shannon entropy. [97] The platform-free and species-free nature of QDMR makes it potentially applicable to various methylation data. This approach provides an effective tool for the high-throughput identification of the functional regions involved in epigenetic regulation. QDMR can be used as an effective tool for the quantification of methylation difference and identification of DMRs across multiple samples. [98]

Gene-set analysis (a.k.a. pathway analysis; usually performed tools such as DAVID, GoSeq or GSEA) has been shown to be severely biased when applied to high-throughput methylation data (e.g. MeDIP-seq, MeDIP-ChIP, HELP-seq etc.), and a wide range of studies have thus mistakenly reported hyper-methylation of genes related to development and differentiation; it has been suggested that this can be corrected using sample label permutations or using a statistical model to control for differences in the numberes of CpG probes / CpG sites that target each gene. [99]

DNA methylation marks

DNA methylation marks — genomic regions with specific methylation pattern in a specific biological state such as tissue, cell type, individual — are regarded as possible functional regions involved in gene transcriptional regulation. Although various human cell types may have the same genome, these cells have different methylomes. The systematic identification and characterization of methylation marks across cell types are crucial to understanding the complex regulatory network for cell fate determination. Hongbo Liu et al. proposed an entropy-based framework termed SMART to integrate the whole genome bisulfite sequencing methylomes across 42 human tissues/cells and identified 757,887 genome segments. [100] Nearly 75% of the segments showed uniform methylation across all cell types. From the remaining 25% of the segments, they identified cell type-specific hypo/hypermethylation marks that were specifically hypo/hypermethylated in a minority of cell types using a statistical approach and presented an atlas of the human methylation marks. Further analysis revealed that the cell type-specific hypomethylation marks were enriched through H3K27ac and transcription factor binding sites in cell type-specific manner. In particular, they observed that the cell type-specific hypomethylation marks are associated with the cell type-specific super-enhancers that drive the expression of cell identity genes. This framework provides a complementary, functional annotation of the human genome and helps to elucidate the critical features and functions of cell type-specific hypomethylation.

The entropy-based Specific Methylation Analysis and Report Tool, termed "SMART", which focuses on integrating a large number of DNA methylomes for the de novo identification of cell type-specific methylation marks. The latest version of SMART is focused on three main functions including de novo identification of differentially methylated regions (DMRs) by genome segmentation, identification of DMRs from predefined regions of interest, and identification of differentially methylated CpG sites. [101]

In Identification & Detection of Body Fluids

DNA methylation allows for several tissues to be analyzed in one assay as well as for small amounts of body fluid to be identified with the use of extracted DNA.Usually, the two approaches of DNA methylation are either methylated-sensitive restriction enzymes or treatment with sodium bisulphite. [102] Methylated sensitive restriction enzymes work by cleaving specific CpG, cytosine and guanine separated by only one phosphate group, recognition sites when the CpG is methylated. In contrast, un-methylated cytosines are transformed to uracil and in the process methylated cytosines remain methylated. In particular, methylation profiles can provide insight on when or how body fluids were left at crime scenes, identify the kind of body fluid, and approximate age, gender, and phenotypic characteristics of perpetrators. [103] Research indicates various markers that can be used for DNA methylation.Deciding which marker to use for an assay is one of the first steps of identification of body fluids. In general, markers are selected by examining prior research conducted. Identification markers that are chosen should give a positive result for one type of cell. One portion of chromosome that is an area of focus when conducting DNA methylation are tissue-specific differentially methylated regions, T-DMRs.The degree of methylation for the T-DMRs ranges depending on the body fluid. [103] A research team developed a marker system that is two-fold. The first marker is methylated only in the target fluid while the second is methylated in the rest of the fluids. [88] For instance, if venous blood marker A is un-methylated and venous blood marker B is methylated in a fluid, it indicates the presence of only venous blood. In contrast, if venous blood marker A is methylated and venous blood marker B is un-methylated in some fluid, then that indicates venous blood is in a mixture of fluids. Some examples for DNA methylation markers are Mens1(menstrual blood), Spei1(saliva), and Sperm2(seminal fluid).

DNA methylation provides a relatively good means of sensitivity when identifying and detecting body fluids. In one study, only ten nanograms of a sample was necessary to ascertain successful results. [104] DNA methylation provides a good discernment of mixed samples since it involves markers that give “on or off” signals. DNA methylation is not impervious to external conditions. Even under degraded conditions using the DNA methylation techniques, the markers are stable enough that there are still noticeable differences between degraded samples and control samples. Specifically, in one study, it was found that there were not any noticeable changes in methylation patterns over an extensive period of time. [103]

Computational prediction

DNA methylation can also be detected by computational models through sophisticated algorithms and methods. Computational models can facilitate the global profiling of DNA methylation across chromosomes, and often such models are faster and cheaper to perform than biological assays. Such up-to-date computational models include Bhasin, et al., [105] Bock, et al., [106] and Zheng, et al. [107] [108] Together with biological assay, these methods greatly facilitate the DNA methylation analysis.

See also

Related Research Articles

Epigenetics study of changes in gene expression or cellular phenotype

Epigenetics is the study of heritable phenotype changes that do not involve alterations in the DNA sequence. The Greek prefix epi- in epigenetics implies features that are "on top of" or "in addition to" the traditional genetic basis for inheritance. Epigenetics most often denotes changes that affect gene activity and expression, but can also be used to describe any heritable phenotypic change. Such effects on cellular and physiological phenotypic traits may result from external or environmental factors, or be part of normal development. The standard definition of epigenetics requires these alterations to be heritable, either in the progeny of cells or of organisms.

DNA methyltransferase

In biochemistry, the DNA methyltransferase family of enzymes catalyze the transfer of a methyl group to DNA. DNA methylation serves a wide variety of biological functions. All the known DNA methyltransferases use S-adenosyl methionine (SAM) as the methyl donor.

Methyltransferase Group of methylating enzymes

Methyltransferases are a large group of enzymes that all methylate their substrates but can be split into several subclasses based on their structural features. The most common class of methyltransferases is class I, all of which contain a Rossman fold for binding S-Adenosyl methionine (SAM). Class II methyltransferases contain a SET domain, which are exemplified by SET domain histone methyltransferases, and class III methyltransferases, which are membrane associated. Methyltransferases can also be grouped as different types utilizing different substrates in methyl transfer reactions. These types include protein methyltransferases, DNA/RNA methyltransferases, natural product methyltransferases, and non-SAM dependent methyltransferases. SAM is the classical methyl donor for methyltrasferases, however, examples of other methyl donors are seen in nature. The general mechanism for methyl transfer is a SN2-like nucleophilic attack where the methionine sulfur serves as the nucleophile that transfers the methyl group to the enzyme substrate. SAM is converted to S-Adenosyl homocysteine (SAH) during this process. The breaking of the SAM-methyl bond and the formation of the substrate-methyl bond happen nearly simultaneously. These enzymatic reactions are found in many pathways and are implicated in genetic diseases, cancer, and metabolic diseases.

DNMT1 protein-coding gene in the species Homo sapiens

DNA (cytosine-5)-methyltransferase 1 is an enzyme that catalyzes the transfer of methyl groups to specific CpG structures in DNA, a process called DNA methylation. In humans, it is encoded by the DNMT1 gene. DNMT1 forms part of the family of DNA methyltransferase enzymes, which consists primarily of DNMT1, DNMT3A, and DNMT3B.

DNMT3B protein-coding gene in the species Homo sapiens

DNA (cytosine-5-)-methyltransferase 3 beta, is an enzyme that in humans in encoded by the DNMT3B gene. Mutation in this gene are associated with immunodeficiency, centromere instability and facial anomalies syndrome.

DNA (cytosine-5)-methyltransferase 3A protein-coding gene in the species Homo sapiens

DNA (cytosine-5)-methyltransferase 3A is an enzyme that catalyzes the transfer of methyl groups to specific CpG structures in DNA, a process called DNA methylation. The enzyme is encoded in humans by the DNMT3A gene.

DNMT3L protein-coding gene in the species Homo sapiens

DNA (cytosine-5)-methyltransferase 3-like is an enzyme that in humans is encoded by the DNMT3L gene.

TRDMT1 protein-coding gene in the species Homo sapiens

tRNA (cytosine-5-)-methyltransferase is an enzyme that in humans is encoded by the TRDMT1 gene.

Epigenomics is the study of the complete set of epigenetic modifications on the genetic material of a cell, known as the epigenome. The field is analogous to genomics and proteomics, which are the study of the genome and proteome of a cell. Epigenetic modifications are reversible modifications on a cell's DNA or histones that affect gene expression without altering the DNA sequence. Epigenomic maintenance is a continuous process and plays an important role in stability of eukaryotic genomes by taking part in crucial biological mechanisms like DNA repair. Plant flavones are said to be inhibiting epigenomic marks that cause cancers. Two of the most characterized epigenetic modifications are DNA methylation and histone modification. Epigenetic modifications play an important role in gene expression and regulation, and are involved in numerous cellular processes such as in differentiation/development and tumorigenesis. The study of epigenetics on a global level has been made possible only recently through the adaptation of genomic high-throughput assays.

Methylated DNA immunoprecipitation is a large-scale purification technique in molecular biology that is used to enrich for methylated DNA sequences. It consists of isolating methylated DNA fragments via an antibody raised against 5-methylcytosine (5mC). This technique was first described by Weber M. et al. in 2005 and has helped pave the way for viable methylome-level assessment efforts, as the purified fraction of methylated DNA can be input to high-throughput DNA detection methods such as high-resolution DNA microarrays (MeDIP-chip) or next-generation sequencing (MeDIP-seq). Nonetheless, understanding of the methylome remains rudimentary; its study is complicated by the fact that, like other epigenetic properties, patterns vary from cell-type to cell-type.

Combined bisulfite restriction analysis

Combined Bisulfite Restriction Analysis is a molecular biology technique that allows for the sensitive quantification of DNA methylation levels at a specific genomic locus on a DNA sequence in a small sample of genomic DNA. The technique is a variation of bisulfite sequencing, and combines bisulfite conversion based polymerase chain reaction with restriction digestion. Originally developed to reliably handle minute amounts of genomic DNA from microdissected paraffin-embedded tissue samples, the technique has since seen widespread usage in cancer research and epigenetics studies.

Cancer epigenetics study of epigenetic modifications to the DNA of cancer cells

Cancer epigenetics is the study of epigenetic modifications to the DNA of cancer cells that do not involve a change in the nucleotide sequence. Epigenetic alterations may be just as important, or even more important, than genetic mutations in a cell's transformation to cancer. In cancers, loss of expression of genes occurs about 10 times more frequently by transcription silencing than by mutations. As Vogelstein et al. point out, in a colorectal cancer there are usually about 3 to 6 driver mutations and 33 to 66 hitchhiker or passenger mutations. However, in colon tumors compared to adjacent normal-appearing colonic mucosa, there are about 600 to 800 heavily methylated CpG islands in promoters of genes in the tumors while these CpG islands are not methylated in the adjacent mucosa. Manipulation of epigenetic alterations holds great promise for cancer prevention, detection, and therapy. In different types of cancer, a variety of epigenetic mechanisms can be perturbed, such as silencing of tumor suppressor genes and activation of oncogenes by altered CpG island methylation patterns, histone modifications, and dysregulation of DNA binding proteins. Several medications which have epigenetic impact are now used in several of these diseases.

Embryonic stem cells are capable of self-renewing and differentiating to the desired fate depending on its position within the body. Stem cell homeostasis is maintained through epigenetic mechanisms that are highly dynamic in regulating the chromatin structure as well as specific gene transcription programs. Epigenetics has been used to refer to changes in gene expression, which are heritable through modifications not affecting the DNA sequence.

Differentially methylated regions (DMRs) are genomic regions with different DNA methylation status across different biological samples and regarded as possible functional regions involved in gene transcriptional regulation. The biological samples can be different cells/tissues within the same individual, the same cell/tissue at different times, cells/tissues from different individuals, even different alleles in the same cell.

Epigenetic mechanisms are regulatory mechanisms, which change expression levels of genes. Several mechanisms are considered epigenetic, including DNA methylation, histone modifications and non-coding RNAs. Epigenetic mechanisms play a role in processes like development, learning and memory formation, aging, diseases, cell differentiation and genome defence.

Epigenetics of physical exercise is the study of epigenetic modifications resulting from physical exercise to the genome of cells. Epigenetic modifications are heritable alterations that are not due to changes in the sequence of nucleotides. Epigenetic modifications, such as histone modifications and DNA methylation, alter the accessibility to DNA and change chromatin structure, thereby regulating patterns of gene expression. Methylated histones can act as binding sites for certain transcription factors due to their bromodomains and chromodomains. Methylated histones can also prevent the binding of transcription factors by hiding the transcription factor's recognition site, which is usually found on the major groove of DNA. The methyl groups bound to the cytosine residues lie in the major groove of DNA, the same region most transcription factors use to read a DNA sequence. A common epigenetic tag found in DNA is the covalent attachment of a methyl group to the C5 position of the cytosine found in CpG dinucleotide sequences. CpG methylation is an important mechanism of transcriptional silencing. Methylation of CpG islands is shown to reduce gene expression by the formation of tightly condensed heterochromatin that is transcriptionally inactive. CpG sites in a gene are most commonly found in the promoter regions of a gene while also being present in non promoter regions. The CpG sites in non promoter regions tend to be constitutively methylated, causing transcription machinery to ignore them as possible promoters. The CpG site near promoter regions are mostly left unmethylated until a cell decides to methylate them and repress transcription. Methylation of CpGs in promoter regions result in the transcriptional silencing of a gene. Environmental factors including physical exercise have been shown to have a beneficial influence on epigenetic modifications.

DNA methylation in cancer plays a variety of roles, helping to change the healthy regulation of gene expression to a disease pattern.

GLAD-PCR assay

Glal hydrolysis and Ligation Adapter Dependent PCR assay is the novel method to determine R(5mC)GY sites produced in the course of de novo DNA methylation with DNMTЗA and DNMTЗB DNA methyltransferases. GLAD-PCR assay do not require bisulfite treatment of the DNA.

CpG island hypermethylation is an epigenetic control aberration that is important for gene inactivation in cancer cells. Hypermethylation of CpG islands has been described in almost every type of tumor. Many important cellular pathways, such as DNA repair, cell cycle (p14ARF), apoptosis (DAPK), cell adherence, are inactivated by this epigenetic lesion. Hypermethylation is linked to methyl-binding proteins, DNA methyltransferases and histone deacetylase, but the degree to which this process selectively silences tumor suppressor genes continues to remain a vibrant field of study. The list for hypermethylated genes is growing and functional and genetic studies are being performed to determine which hypermethylation events are relevant for tumorigenesis. Basic as well as translational research will be needed to understand the mechanisms and roles of CpG island hypermethylation in cancer.

References

  1. 1 2 Evans HH, Evans TE (December 1970). "Methylation of the deoxyribonucleic acid of Physarum polycephalum at various periods during the mitotic cycle". The Journal of Biological Chemistry. 245 (23): 6436–41. PMID   5530731.
  2. 1 2 Steenwyk, JL, St-Denis, J, Dresch, J, Larochelle, D, Drewell, RA (2017). "Whole genome bisulfite sequencing reveals a sparse, but robust pattern of DNA methylation in the Dictyostelium discoideum genome". bioRxiv   166033 .
  3. Hu CW, Chen JL, Hsu YW, Yen CC, Chao MR (January 2015). "Trace analysis of methylated and hydroxymethylated cytosines in DNA by isotope-dilution LC-MS/MS: first evidence of DNA methylation in Caenorhabditis elegans". The Biochemical Journal. 465 (1): 39–47. doi:10.1042/bj20140844. PMID   25299492.
  4. 1 2 3 4 Zemach A, McDaniel IE, Silva P, Zilberman D (May 2010). "Genome-wide evolutionary analysis of eukaryotic DNA methylation". Science. 328 (5980): 916–9. doi:10.1126/science.1186366. PMID   20395474.
  5. 1 2 3 Capuano F, Mülleder M, Kok R, Blom HJ, Ralser M (April 2014). "Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species". Analytical Chemistry. 86 (8): 3697–702. doi:10.1021/ac500447w. PMC   4006885 . PMID   24640988.
  6. Ratel D, Ravanat JL, Berger F, Wion D (March 2006). "N6-methyladenine: the other methylated base of DNA". BioEssays. 28 (3): 309–15. doi:10.1002/bies.20342. PMC   2754416 . PMID   16479578.
  7. Wu TP, Wang T, Seetin MG, Lai Y, Zhu S, Lin K, Liu Y, Byrum SD, Mackintosh SG, Zhong M, Tackett A, Wang G, Hon LS, Fang G, Swenberg JA, Xiao AZ (April 2016). "DNA methylation on N(6)-adenine in mammalian embryonic stem cells". Nature. 532 (7599): 329–33. doi:10.1038/nature17640. PMC   4977844 . PMID   27027282.
  8. Angéla Békési and Beáta G Vértessy "Uracil in DNA: error or signal?"
  9. Rana AK, Ankri S (2016). "Reviving the RNA World: An Insight into the Appearance of RNA Methyltransferases". Frontiers in Genetics. 7: 99. doi:10.3389/fgene.2016.00099. PMC   4893491 . PMID   27375676.
  10. Dodge JE, Ramsahoye BH, Wo ZG, Okano M, Li E (May 2002). "De novo methylation of MMLV provirus in embryonic stem cells: CpG versus non-CpG methylation". Gene. 289 (1–2): 41–8. doi:10.1016/S0378-1119(02)00469-9. PMID   12036582.
  11. Haines TR, Rodenhiser DI, Ainsworth PJ (December 2001). "Allele-specific non-CpG methylation of the Nf1 gene during early mouse development". Developmental Biology. 240 (2): 585–98. doi:10.1006/dbio.2001.0504. PMID   11784085.
  12. 1 2 Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR (November 2009). "Human DNA methylomes at base resolution show widespread epigenomic differences". Nature. 462 (7271): 315–22. doi:10.1038/nature08514. PMC   2857523 . PMID   19829295.
  13. Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD, Yu M, Tonti-Filippini J, Heyn H, Hu S, Wu JC, Rao A, Esteller M, He C, Haghighi FG, Sejnowski TJ, Behrens MM, Ecker JR (August 2013). "Global epigenomic reconfiguration during mammalian brain development". Science. 341 (6146): 1237905. doi:10.1126/science.1237905. PMC   3785061 . PMID   23828890.
  14. 1 2 Kulis M, Merkel A, Heath S, Queirós AC, Schuyler RP, Castellano G, Beekman R, Raineri E, Esteve A, Clot G, Verdaguer-Dot N, Duran-Ferrer M, Russiñol N, Vilarrasa-Blasi R, Ecker S, Pancaldi V, Rico D, Agueda L, Blanc J, Richardson D, Clarke L, Datta A, Pascual M, Agirre X, Prosper F, Alignani D, Paiva B, Caron G, Fest T, Muench MO, Fomin ME, Lee ST, Wiemels JL, Valencia A, Gut M, Flicek P, Stunnenberg HG, Siebert R, Küppers R, Gut IG, Campo E, Martín-Subero JI (July 2015). "Whole-genome fingerprint of the DNA methylome during human B cell differentiation". Nature Genetics. 47 (7): 746–56. doi:10.1038/ng.3291. PMC   5444519 . PMID   26053498.
  15. Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA, Gehrke C (April 1982). "Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells". Nucleic Acids Research. 10 (8): 2709–21. doi:10.1093/nar/10.8.2709. PMC   320645 . PMID   7079182.
  16. Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Schöler A, van Nimwegen E, Wirbelauer C, Oakeley EJ, Gaidatzis D, Tiwari VK, Schübeler D (December 2011). "DNA-binding factors shape the mouse methylome at distal regulatory regions". Nature. 480 (7378): 490–5. doi:10.1038/nature11086. PMID   22170606.
  17. Suzuki MM, Kerr AR, De Sousa D, Bird A (May 2007). "CpG methylation is targeted to transcription units in an invertebrate genome". Genome Research. 17 (5): 625–31. doi:10.1101/gr.6163007. PMC   1855171 . PMID   17420183.
  18. 1 2 Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. (February 2001). "Initial sequencing and analysis of the human genome". Nature. 409 (6822): 860–921. doi:10.1038/35057062. PMID   11237011.
  19. Bird AP (1986-05-15). "CpG-rich islands and the function of DNA methylation". Nature. 321 (6067): 209–13. doi:10.1038/321209a0. PMID   2423876.
  20. Gardiner-Garden M, Frommer M (July 1987). "CpG islands in vertebrate genomes". Journal of Molecular Biology. 196 (2): 261–82. doi:10.1016/0022-2836(87)90689-9. PMID   3656447.
  21. Illingworth RS, Gruenewald-Schneider U, Webb S, Kerr AR, James KD, Turner DJ, Smith C, Harrison DJ, Andrews R, Bird AP (September 2010). "Orphan CpG islands identify numerous conserved promoters in the mammalian genome". PLoS Genetics. 6 (9): e1001134. doi:10.1371/journal.pgen.1001134. PMC   2944787 . PMID   20885785.
  22. Saxonov S, Berg P, Brutlag DL (January 2006). "A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters". Proceedings of the National Academy of Sciences of the United States of America. 103 (5): 1412–7. doi:10.1073/pnas.0510310103. PMC   1345710 . PMID   16432200.
  23. 1 2 Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME, Ukomadu C, Sadler KC, Pradhan S, Pellegrini M, Jacobsen SE (May 2010). "Conservation and divergence of methylation patterning in plants and animals". Proceedings of the National Academy of Sciences of the United States of America. 107 (19): 8689–94. doi:10.1073/pnas.1002720107. PMC   2889301 . PMID   20395551.
  24. Mohn F, Weber M, Rebhan M, Roloff TC, Richter J, Stadler MB, Bibel M, Schübeler D (June 2008). "Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors". Molecular Cell. 30 (6): 755–66. doi:10.1016/j.molcel.2008.05.007. PMID   18514006.
  25. Weber M, Hellmann I, Stadler MB, Ramos L, Pääbo S, Rebhan M, Schübeler D (April 2007). "Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome". Nature Genetics. 39 (4): 457–66. doi:10.1038/ng1990. PMID   17334365.
  26. Schübeler D (January 2015). "Function and information content of DNA methylation". Nature. 517 (7534): 321–6. doi:10.1038/nature14192. PMID   25592537.
  27. Choy MK, Movassagh M, Goh HG, Bennett MR, Down TA, Foo RS (September 2010). "Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated". BMC Genomics. 11 (1): 519. doi:10.1186/1471-2164-11-519. PMC   2997012 . PMID   20875111.
  28. Huff JT, Zilberman D (March 2014). "Dnmt1-independent CG methylation contributes to nucleosome positioning in diverse eukaryotes". Cell. 156 (6): 1286–1297. doi:10.1016/j.cell.2014.01.029. PMC   3969382 . PMID   24630728.
  29. Yoder JA, Walsh CP, Bestor TH (August 1997). "Cytosine methylation and the ecology of intragenomic parasites". Trends in Genetics. 13 (8): 335–40. doi:10.1016/s0168-9525(97)01181-5. PMID   9260521.
  30. Lev Maor G, Yearim A, Ast G (May 2015). "The alternative role of DNA methylation in splicing regulation". Trends in Genetics. 31 (5): 274–80. doi:10.1016/j.tig.2015.03.002. PMID   25837375.
  31. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJ, Haussler D, Marra MA, Hirst M, Wang T, Costello JF (July 2010). "Conserved role of intragenic DNA methylation in regulating alternative promoters". Nature. 466 (7303): 253–7. doi:10.1038/nature09165. PMC   3998662 . PMID   20613842.
  32. Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK, Shia WJ, Anderson S, Yates J, Washburn MP, Workman JL (November 2005). "Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription". Cell. 123 (4): 581–92. doi:10.1016/j.cell.2005.10.023. PMID   16286007.
  33. Cedar H, Bergman Y (July 2012). "Programming of DNA methylation patterns". Annual Review of Biochemistry. 81: 97–117. doi:10.1146/annurev-biochem-052610-091920. PMID   22404632.  via Annual Reviews (subscription required)
  34. Beard C, Li E, Jaenisch R (October 1995). "Loss of methylation activates Xist in somatic but not in embryonic cells". Genes & Development. 9 (19): 2325–34. doi:10.1101/gad.9.19.2325. PMID   7557385.
  35. Li E, Beard C, Jaenisch R (November 1993). "Role for DNA methylation in genomic imprinting". Nature. 366 (6453): 362–5. doi:10.1038/366362a0. PMID   8247133.
  36. Borgel J, Guibert S, Li Y, Chiba H, Schübeler D, Sasaki H, Forné T, Weber M (December 2010). "Targets and dynamics of promoter DNA methylation during early mouse development". Nature Genetics. 42 (12): 1093–100. doi:10.1038/ng.708. PMID   21057502.
  37. Seisenberger S, Peat JR, Hore TA, Santos F, Dean W, Reik W (January 2013). "Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 368 (1609): 20110330. doi:10.1098/rstb.2011.0330. PMC   3539359 . PMID   23166394.
  38. Wang YP, Lei QY (May 2018). "Metabolic recoding of epigenetics in cancer". Cancer Communications. 38 (1): 25. doi:10.1186/s40880-018-0302-3. PMC   5993135 . PMID   29784032.
  39. Daura-Oller E, Cabre M, Montero MA, Paternain JL, Romeu A (April 2009). "Specific gene hypomethylation and cancer: new insights into coding region feature trends". Bioinformation. 3 (8): 340–3. doi:10.6026/97320630003340. PMC   2720671 . PMID   19707296.
  40. Craig, JM; Wong, NC (editor) (2011). Epigenetics: A Reference Manual. Caister Academic Press. ISBN   978-1-904455-88-2.CS1 maint: Multiple names: authors list (link) CS1 maint: Extra text: authors list (link)
  41. 1 2 3 Gonzalo S (August 2010). "Epigenetic alterations in aging". Journal of Applied Physiology. 109 (2): 586–97. doi:10.1152/japplphysiol.00238.2010. PMC   2928596 . PMID   20448029.
  42. Lund G, Andersson L, Lauria M, Lindholm M, Fraga MF, Villar-Garea A, Ballestar E, Esteller M, Zaina S (July 2004). "DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E". The Journal of Biological Chemistry. 279 (28): 29147–54. doi:10.1074/jbc.m403618200. PMID   15131116.
  43. Castro R, Rivera I, Struys EA, Jansen EE, Ravasco P, Camilo ME, Blom HJ, Jakobs C, Tavares de Almeida I (August 2003). "Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease". Clinical Chemistry. 49 (8): 1292–6. doi:10.1373/49.8.1292. PMID   12881445.
  44. Huang YS, Zhi YF, Wang SR (October 2009). "Hypermethylation of estrogen receptor-alpha gene in atheromatosis patients and its correlation with homocysteine". Pathophysiology. 16 (4): 259–65. doi:10.1016/j.pathophys.2009.02.010. PMID   19285843.
  45. Dong C, Yoon W, Goldschmidt-Clermont PJ (August 2002). "DNA methylation and atherosclerosis". The Journal of Nutrition. 132 (8 Suppl): 2406S–2409S. doi:10.1093/jn/132.8.2406S. PMID   12163701.
  46. Ying AK, Hassanain HH, Roos CM, Smiraglia DJ, Issa JJ, Michler RE, Caligiuri M, Plass C, Goldschmidt-Clermont PJ (April 2000). "Methylation of the estrogen receptor-alpha gene promoter is selectively increased in proliferating human aortic smooth muscle cells". Cardiovascular Research. 46 (1): 172–9. doi:10.1016/s0008-6363(00)00004-3. PMID   10727665.
  47. Zhu S, Goldschmidt-Clermont PJ, Dong C (August 2005). "Inactivation of monocarboxylate transporter MCT3 by DNA methylation in atherosclerosis". Circulation. 112 (9): 1353–61. doi:10.1161/circulationaha.104.519025. PMID   16116050.
  48. Horvath S (2013). "DNA methylation age of human tissues and cell types". Genome Biology. 14 (10): R115. doi:10.1186/gb-2013-14-10-r115. PMC   4015143 . PMID   24138928.
  49. Wong CC, Caspi A, Williams B, Craig IW, Houts R, Ambler A, Moffitt TE, Mill J (August 2010). "A longitudinal study of epigenetic variation in twins". Epigenetics. 5 (6): 516–26. doi:10.4161/epi.5.6.12226. PMC   3322496 . PMID   20505345.
  50. Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, Diez J, Sanchez-Mut JV, Setien F, Carmona FJ, Puca AA, Sayols S, Pujana MA, Serra-Musach J, Iglesias-Platas I, Formiga F, Fernandez AF, Fraga MF, Heath SC, Valencia A, Gut IG, Wang J, Esteller M (June 2012). "Distinct DNA methylomes of newborns and centenarians". Proceedings of the National Academy of Sciences of the United States of America. 109 (26): 10522–7. doi:10.1073/pnas.1120658109. PMC   3387108 . PMID   22689993.
  51. 1 2 Barrès R, Yan J, Egan B, Treebak JT, Rasmussen M, Fritz T, Caidahl K, Krook A, O'Gorman DJ, Zierath JR (March 2012). "Acute exercise remodels promoter methylation in human skeletal muscle". Cell Metabolism. 15 (3): 405–11. doi:10.1016/j.cmet.2012.01.001. PMID   22405075.
  52. Rönn T, Volkov P, Davegårdh C, Dayeh T, Hall E, Olsson AH, Nilsson E, Tornberg A, Dekker Nitert M, Eriksson KF, Jones HA, Groop L, Ling C (June 2013). "A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue". PLoS Genetics. 9 (6): e1003572. doi:10.1371/journal.pgen.1003572. PMC   3694844 . PMID   23825961.
  53. Zhang FF, Cardarelli R, Carroll J, Zhang S, Fulda KG, Gonzalez K, Vishwanatha JK, Morabia A, Santella RM (March 2011). "Physical activity and global genomic DNA methylation in a cancer-free population". Epigenetics. 6 (3): 293–9. doi:10.4161/epi.6.3.14378. PMC   3092677 . PMID   21178401.
  54. 1 2 Sweatt JD (May 2016). "Dynamic DNA methylation controls glutamate receptor trafficking and synaptic scaling". J. Neurochem. 137 (3): 312–30. doi:10.1111/jnc.13564. PMC   4836967 . PMID   26849493.
  55. Kim S, Kaang BK (January 2017). "Epigenetic regulation and chromatin remodeling in learning and memory". Exp. Mol. Med. 49 (1): e281. doi:10.1038/emm.2016.140. PMC   5291841 . PMID   28082740.
  56. Schafe GE, Nadel NV, Sullivan GM, Harris A, LeDoux JE (1999). "Memory consolidation for contextual and auditory fear conditioning is dependent on protein synthesis, PKA, and MAP kinase". Learn. Mem. 6 (2): 97–110. PMC   311283 . PMID   10327235.
  57. 1 2 3 Halder R, Hennion M, Vidal RO, Shomroni O, Rahman RU, Rajput A, Centeno TP, van Bebber F, Capece V, Garcia Vizcaino JC, Schuetz AL, Burkhardt S, Benito E, Navarro Sala M, Javan SB, Haass C, Schmid B, Fischer A, Bonn S (January 2016). "DNA methylation changes in plasticity genes accompany the formation and maintenance of memory". Nat. Neurosci. 19 (1): 102–10. doi:10.1038/nn.4194. PMID   26656643.
  58. 1 2 Duke CG, Kennedy AJ, Gavin CF, Day JJ, Sweatt JD (July 2017). "Experience-dependent epigenomic reorganization in the hippocampus". Learn. Mem. 24 (7): 278–288. doi:10.1101/lm.045112.117. PMC   5473107 . PMID   28620075.
  59. PhD, Alexei Gratchev. "Review on DNA Methylation". www.methods.info.
  60. Barau J, Teissandier A, Zamudio N, Roy S, Nalesso V, Hérault Y, Guillou F, Bourc'his D (November 2016). "The DNA methyltransferase DNMT3C protects male germ cells from transposon activity". Science. 354 (6314): 909–912. doi:10.1126/science.aah5143. PMID   27856912.
  61. Jain D, Meydan C, Lange J, Claeys Bouuaert C, Lailler N, Mason CE, Anderson KV, Keeney S (August 2017). "rahu is a mutant allele of Dnmt3c, encoding a DNA methyltransferase homolog required for meiosis and transposon repression in the mouse male germline". PLoS Genetics. 13 (8): e1006964. doi:10.1371/journal.pgen.1006964. PMC   5607212 . PMID   28854222.
  62. Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, Golic KG, Jacobsen SE, Bestor TH (January 2006). "Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2". Science. 311 (5759): 395–8. doi:10.1126/science.1120976. PMID   16424344.
  63. Cao X, Jacobsen SE (December 2002). "Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes". Proceedings of the National Academy of Sciences of the United States of America. 99 Suppl 4 (Suppl 4): 16491–8. doi:10.1073/pnas.162371599. PMC   139913 . PMID   12151602.
  64. 1 2 Aufsatz W, Mette MF, van der Winden J, Matzke AJ, Matzke M (December 2002). "RNA-directed DNA methylation in Arabidopsis". Proceedings of the National Academy of Sciences of the United States of America. 99 Suppl 4 (90004): 16499–506. doi:10.1073/pnas.162371499. PMC   139914 . PMID   12169664.
  65. Wang Y, Jorda M, Jones PL, Maleszka R, Ling X, Robertson HM, Mizzen CA, Peinado MA, Robinson GE (October 2006). "Functional CpG methylation system in a social insect". Science. 314 (5799): 645–7. doi:10.1126/science.1135213. PMID   17068262.
  66. Ying and Li-Byarlay (2015). Physiological and Molecular Mechanisms of Nutrition in Honey Bees. Advances in Insect Physiology. 49. pp. 25–58. doi:10.1016/bs.aiip.2015.06.002. ISBN   9780128025864.
  67. Li-Byarlay H, Li Y, Stroud H, Feng S, Newman TC, Kaneda M, Hou KK, Worley KC, Elsik CG, Wickline SA, Jacobsen SE, Ma J, Robinson GE (July 2013). "RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee". Proceedings of the National Academy of Sciences of the United States of America. 110 (31): 12750–5. doi:10.1073/pnas.1310735110. PMC   3732956 . PMID   23852726.
  68. Smith SS, Thomas CA (May 1981). "The two-dimensional restriction analysis of Drosophila DNAs: males and females". Gene. 13 (4): 395–408. doi:10.1016/0378-1119(81)90019-6. PMID   6266924.
  69. Lyko F, Ramsahoye BH, Jaenisch R (November 2000). "DNA methylation in Drosophila melanogaster". Nature. 408 (6812): 538–40. doi:10.1038/35046205. PMID   11117732.
  70. Takayama S, Dhahbi J, Roberts A, Mao G, Heo SJ, Pachter L, Martin DI, Boffelli D (May 2014). "Genome methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2 activity". Genome Research. 24 (5): 821–30. doi:10.1101/gr.162412.113. PMC   4009611 . PMID   24558263.
  71. Zhang G, Huang H, Liu D, Cheng Y, Liu X, Zhang W, Yin R, Zhang D, Zhang P, Liu J, Li C, Liu B, Luo Y, Zhu Y, Zhang N, He S, He C, Wang H, Chen D (May 2015). "N6-methyladenine DNA modification in Drosophila". Cell. 161 (4): 893–906. doi:10.1016/j.cell.2015.04.018. PMID   25936838.
  72. Antequera F, Tamame M, Villanueva JR, Santos T (July 1984). "DNA methylation in the fungi". The Journal of Biological Chemistry. 259 (13): 8033–6. PMID   6330093.
  73. Binz T, D'Mello N, Horgen PA (1998). "A comparison of DNA methylation levels in selected isolates of higher fungi". Mycologia . 90 (5): 785–790. doi:10.2307/3761319. JSTOR   3761319.
  74. Liu SY, Lin JQ, Wu HL, Wang CC, Huang SJ, Luo YF, Sun JH, Zhou JX, Yan SJ, He JG, Wang J, He ZM (2012). "Bisulfite sequencing reveals that Aspergillus flavus holds a hollow in DNA methylation". PLOS One. 7 (1): e30349. doi:10.1371/journal.pone.0030349. PMC   3262820 . PMID   22276181.
  75. Selker EU, Tountas NA, Cross SH, Margolin BS, Murphy JG, Bird AP, Freitag M (April 2003). "The methylated component of the Neurospora crassa genome". Nature. 422 (6934): 893–7. doi:10.1038/nature01564. PMID   12712205.
  76. Smith SS, Ratner DI (July 1991). "Lack of 5-methylcytosine in Dictyostelium discoideum DNA". The Biochemical Journal. 277 ( Pt 1): 273–5. PMC   1151219 . PMID   1713034.
  77. Reilly JG, Braun R, Thomas CA (July 1980). "Methjylation in Physarum DNA". FEBS Letters. 116 (2): 181–4. doi:10.1016/0014-5793(80)80638-7. PMID   6250882.
  78. Palmer BR, Marinus MG (May 1994). "The dam and dcm strains of Escherichia coli--a review". Gene. 143 (1): 1–12. doi:10.1016/0378-1119(94)90597-5. PMID   8200522.
  79. "Making unmethylated (dam-/dcm-) DNA". Archived from the original on 2011-01-06.
  80. Rana AK (January 2018). "Crime investigation through DNA methylation analysis: methods and applications in forensics". Egyptian Journal of Forensic Sciences. 8 (7). doi:10.1186/s41935-018-0042-1.
  81. Hernández HG, Tse MY, Pang SC, Arboleda H, Forero DA (October 2013). "Optimizing methodologies for PCR-based DNA methylation analysis". BioTechniques. 55 (4): 181–97. doi:10.2144/000114087. PMID   24107250.
  82. Wood RJ, Maynard-Smith MD, Robinson VL, Oyston PC, Titball RW, Roach PL (August 2007). Fugmann S, ed. "Kinetic analysis of Yersinia pestis DNA adenine methyltransferase activity using a hemimethylated molecular break light oligonucleotide". PLOS One. 2 (8): e801. doi:10.1371/journal.pone.0000801. PMC   1949145 . PMID   17726531.
  83. Li J, Yan H, Wang K, Tan W, Zhou X (February 2007). "Hairpin fluorescence DNA probe for real-time monitoring of DNA methylation". Analytical Chemistry. 79 (3): 1050–6. doi:10.1021/ac061694i. PMID   17263334.
  84. David R. McCarthy, Philip D. Cotter, and Michelle M. Hanna (2012). MethylMeter(r): A Quantitative, Sensitive, and Bisulfite-Free Method for Analysis of DNA Methylation, DNA Methylation – From Genomics to Technology, Dr. Tatiana Tatarinova (Ed.), ISBN   978-953-51-0320-2, InTech, doi : 10.5772/36090
  85. Wojdacz TK, Dobrovic A (2007). "Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation". Nucleic Acids Research. 35 (6): e41. doi:10.1093/nar/gkm013. PMC   1874596 . PMID   17289753.
  86. Malentacchi F, Forni G, Vinci S, Orlando C (July 2009). "Quantitative evaluation of DNA methylation by optimization of a differential-high resolution melt analysis protocol". Nucleic Acids Research. 37 (12): e86. doi:10.1093/nar/gkp383. PMC   2709587 . PMID   19454604.
  87. Gokhman D, Lavi E, Prüfer K, Fraga MF, Riancho JA, Kelso J, Pääbo S, Meshorer E, Carmel L (May 2014). "Reconstructing the DNA methylation maps of the Neandertal and the Denisovan". Science. 344 (6183): 523–7. doi:10.1126/science.1250368. PMID   24786081.
  88. 1 2 Forat S, Huettel B, Reinhardt R, Fimmers R, Haidl G, Denschlag D, Olek K (2016-02-01). "Methylation Markers for the Identification of Body Fluids and Tissues from Forensic Trace Evidence". PLOS One. 11 (2): e0147973. doi:10.1371/journal.pone.0147973. PMC   4734623 . PMID   26829227.
  89. Rakyan VK, Down TA, Thorne NP, Flicek P, Kulesha E, Gräf S, Tomazou EM, Bäckdahl L, Johnson N, Herberth M, Howe KL, Jackson DK, Miretti MM, Fiegler H, Marioni JC, Birney E, Hubbard TJ, Carter NP, Tavaré S, Beck S (September 2008). "An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs)". Genome Research. 18 (9): 1518–29. doi:10.1101/gr.077479.108. PMC   2527707 . PMID   18577705.
  90. Lee HY, Park MJ, Choi A, An JH, Yang WI, Shin KJ (January 2012). "Potential forensic application of DNA methylation profiling to body fluid identification". International Journal of Legal Medicine. 126 (1): 55–62. doi:10.1007/s00414-011-0569-2. PMID   21626087.
  91. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M, Ji H, Potash J, Sabunciyan S, Feinberg AP (February 2009). "The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores". Nature Genetics. 41 (2): 178–186. doi:10.1038/ng.298. PMC   2729128 . PMID   19151715.
  92. Reik W, Dean W, Walter J (August 2001). "Epigenetic reprogramming in mammalian development". Science. 293 (5532): 1089–93. doi:10.1126/science.1063443. PMID   11498579.
  93. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES (August 2008). "Genome-scale DNA methylation maps of pluripotent and differentiated cells". Nature. 454 (7205): 766–70. doi:10.1038/nature07107. PMC   2896277 . PMID   18600261.
  94. Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, Herb B, Ladd-Acosta C, Rho J, Loewer S, Miller J, Schlaeger T, Daley GQ, Feinberg AP (December 2009). "Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts". Nature Genetics. 41 (12): 1350–3. doi:10.1038/ng.471. PMC   2958040 . PMID   19881528.
  95. Bjornsson HT, Sigurdsson MI, Fallin MD, Irizarry RA, Aspelund T, Cui H, Yu W, Rongione MA, Ekström TJ, Harris TB, Launer LJ, Eiriksdottir G, Leppert MF, Sapienza C, Gudnason V, Feinberg AP (June 2008). "Intra-individual change over time in DNA methylation with familial clustering". JAMA. 299 (24): 2877–83. doi:10.1001/jama.299.24.2877. PMC   2581898 . PMID   18577732.
  96. Bock C, Walter J, Paulsen M, Lengauer T (June 2008). "Inter-individual variation of DNA methylation and its implications for large-scale epigenome mapping". Nucleic Acids Research. 36 (10): e55. doi:10.1093/nar/gkn122. PMC   2425484 . PMID   18413340.
  97. "QDMR: a quantitative method for identification of differentially methylated regions by entropy". bioinfo.hrbmu.edu.cn.
  98. Zhang Y, Liu H, Lv J, Xiao X, Zhu J, Liu X, Su J, Li X, Wu Q, Wang F, Cui Y (May 2011). "QDMR: a quantitative method for identification of differentially methylated regions by entropy". Nucleic Acids Research. 39 (9): e58. doi:10.1093/nar/gkr053. PMC   3089487 . PMID   21306990.
  99. Geeleher P, Hartnett L, Egan LJ, Golden A, Raja Ali RA, Seoighe C (August 2013). "Gene-set analysis is severely biased when applied to genome-wide methylation data". Bioinformatics. 29 (15): 1851–7. doi:10.1093/bioinformatics/btt311. PMID   23732277.
  100. Liu H, Liu X, Zhang S, Lv J, Li S, Shang S, Jia S, Wei Y, Wang F, Su J, Wu Q, Zhang Y (January 2016). "Systematic identification and annotation of human methylation marks based on bisulfite sequencing methylomes reveals distinct roles of cell type-specific hypomethylation in the regulation of cell identity genes". Nucleic Acids Research. 44 (1): 75–94. doi:10.1093/nar/gkv1332. PMC   4705665 . PMID   26635396.
  101. "SMART". fame.edbc.org.
  102. Sijen, Titia (September 2015). "Molecular approaches for forensic cell type identification: On mRNA, miRNA, DNA methylation and microbial markers". Forensic Science International: Genetics. 18: 21–32. doi:10.1016/j.fsigen.2014.11.015. ISSN   1872-4973. PMID   25488609.
  103. 1 2 3 Kader F, Ghai M (April 2015). "DNA methylation and application in forensic sciences". Forensic Science International. 249: 255–65. doi:10.1016/j.forsciint.2015.01.037. PMID   25732744.
  104. Silva DS, Antunes J, Balamurugan K, Duncan G, Alho CS, McCord B (July 2016). "Developmental validation studies of epigenetic DNA methylation markers for the detection of blood, semen and saliva samples". Forensic Science International. Genetics. 23: 55–63. doi:10.1016/j.fsigen.2016.01.017. PMID   27010659.
  105. Bhasin M, Zhang H, Reinherz EL, Reche PA (August 2005). "Prediction of methylated CpGs in DNA sequences using a support vector machine". FEBS Letters. 579 (20): 4302–8. doi:10.1016/j.febslet.2005.07.002. PMID   16051225.
  106. Bock C, Paulsen M, Tierling S, Mikeska T, Lengauer T, Walter J (March 2006). "CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure". PLoS Genetics. 2 (3): e26. doi:10.1371/journal.pgen.0020026. PMC   1386721 . PMID   16520826.
  107. Zheng H, Jiang SW, Wu H (2011). "Enhancement on the predictive power of the prediction model for human genomic DNA methylation". International Conference on Bioinformatics and Computational Biology (BIOCOMP'11).
  108. Zheng H, Jiang SW, Li J, Wu H (2013). "CpGIMethPred: computational model for predicting methylation status of CpG islands in human genome". BMC Medical Genomics.

Further reading