Post-translational modification

Last updated
Post-translational modification of insulin. At the top, the ribosome translates a mRNA sequence into a protein, insulin, and passes the protein through the endoplasmic reticulum, where it is cut, folded, and held in shape by disulfide (-S-S-) bonds. Then the protein passes through the golgi apparatus, where it is packaged into a vesicle. In the vesicle, more parts are cut off, and it turns into mature insulin. Insulin path.svg
Post-translational modification of insulin. At the top, the ribosome translates a mRNA sequence into a protein, insulin, and passes the protein through the endoplasmic reticulum, where it is cut, folded, and held in shape by disulfide (-S-S-) bonds. Then the protein passes through the golgi apparatus, where it is packaged into a vesicle. In the vesicle, more parts are cut off, and it turns into mature insulin.

In molecular biology, post-translational modification (PTM) is the covalent process of changing proteins following protein biosynthesis. PTMs may involve enzymes or occur spontaneously. Proteins are created by ribosomes, which translate mRNA into polypeptide chains, which may then change to form the mature protein product. PTMs are important components in cell signalling, as for example when prohormones are converted to hormones.

Contents

Post-translational modifications can occur on the amino acid side chains or at the protein's C- or N- termini. [1] They can expand the chemical set of the 22 amino acids by changing an existing functional group or adding a new one such as phosphate. Phosphorylation is highly effective for controlling the enzyme activity and is the most common change after translation. [2] Many eukaryotic and prokaryotic proteins also have carbohydrate molecules attached to them in a process called glycosylation, which can promote protein folding and improve stability as well as serving regulatory functions. Attachment of lipid molecules, known as lipidation, often targets a protein or part of a protein attached to the cell membrane.

Other forms of post-translational modification consist of cleaving peptide bonds, as in processing a propeptide to a mature form or removing the initiator methionine residue. The formation of disulfide bonds from cysteine residues may also be referred to as a post-translational modification. [3] For instance, the peptide hormone insulin is cut twice after disulfide bonds are formed, and a propeptide is removed from the middle of the chain; the resulting protein consists of two polypeptide chains connected by disulfide bonds.

Some types of post-translational modification are consequences of oxidative stress. Carbonylation is one example that targets the modified protein for degradation and can result in the formation of protein aggregates. [4] [5] Specific amino acid modifications can be used as biomarkers indicating oxidative damage. [6] PTMs and metal ions play a crucial and reciprocal role in regulating protein function, influencing cellular processes such as signal transduction and gene expression, with dysregulated interactions implicated in diseases like cancer and neurodegenerative disorders. [7]

Sites that often undergo post-translational modification are those that have a functional group that can serve as a nucleophile in the reaction: the hydroxyl groups of serine, threonine, and tyrosine; the amine forms of lysine, arginine, and histidine; the thiolate anion of cysteine; the carboxylates of aspartate and glutamate; and the N- and C-termini. In addition, although the amide of asparagine is a weak nucleophile, it can serve as an attachment point for glycans. Rarer modifications can occur at oxidized methionines and at some methylene groups in side chains. [8]

Post-translational modification of proteins can be experimentally detected by a variety of techniques, including mass spectrometry, Eastern blotting, and Western blotting.

PTMs involving addition of functional groups

Addition by an enzyme in vivo

Hydrophobic groups for membrane localization

Cofactors for enhanced enzymatic activity

Modifications of translation factors

Smaller chemical groups

Non-enzymatic modifications in vivo

Examples of non-enzymatic PTMs are glycation, glycoxidation, nitrosylation, oxidation, succination, and lipoxidation. [16]

Non-enzymatic additions in vitro

Conjugation with other proteins or peptides

Chemical modification of amino acids

Structural changes

Statistics

Common PTMs by frequency

In 2011, statistics of each post-translational modification experimentally and putatively detected have been compiled using proteome-wide information from the Swiss-Prot database. [29] The 10 most common experimentally found modifications were as follows: [30]

FrequencyModification
58383 Phosphorylation
6751 Acetylation
5526 N-linked glycosylation
2844 Amidation
1619 Hydroxylation
1523 Methylation
1133 O-linked glycosylation
878 Ubiquitylation
826 Pyrrolidone carboxylic acid
504 Sulfation

Common PTMs by residue

Some common post-translational modifications to specific amino-acid residues are shown below. Modifications occur on the side-chain unless indicated otherwise.

Amino AcidAbbrev.Modification
Alanine Ala or A N-acetylation (N-terminus)
Arginine Arg or Rdeimination to citrulline, methylation
Asparagine Asn or N deamidation to Asp or iso(Asp), N-linked glycosylation, spontaneous isopeptide bond formation
Aspartic acid Asp or D isomerization to isoaspartic acid, spontaneous isopeptide bond formation
Cysteine Cys or C disulfide-bond formation, oxidation to sulfenic, sulfinic or sulfonic acid, palmitoylation, N-acetylation (N-terminus), S-nitrosylation
Glutamine Gln or Qcyclization to pyroglutamic acid (N-terminus), deamidation to glutamic acid or isopeptide bond formation to a lysine by a transglutaminase
Glutamic acid Glu or Ecyclization to pyroglutamic acid (N-terminus), gamma-carboxylation
Glycine Gly or GN-myristoylation (N-terminus), N-acetylation (N-terminus)
Histidine His or H phosphorylation
Isoleucine Ile or I
Leucine Leu or L
Lysine Lys or K acetylation, ubiquitylation, SUMOylation, methylation, hydroxylation leading to allysine, spontaneous isopeptide bond formation
Methionine Met or MN-acetylation (N-terminus), N-linked ubiquitination, oxidation to sulfoxide or sulfone
Phenylalanine Phe or F
Proline Pro or P hydroxylation
Serine Ser or S phosphorylation, O-linked glycosylation, N-acetylation (N-terminus)
Threonine Thr or Tphosphorylation, O-linked glycosylation, N-acetylation (N-terminus)
Tryptophan Trp or Wmono- or di-oxidation, formation of kynurenine, tryptophan tryptophylquinone
Tyrosine Tyr or Y sulfation, phosphorylation
Valine Val or VN-acetylation (N-terminus)

Databases and tools

Flowchart of the process and the data sources to predict PTMs. Image for Wiki 2.jpg
Flowchart of the process and the data sources to predict PTMs.

Protein sequences contain sequence motifs that are recognized by modifying enzymes, and which can be documented or predicted in PTM databases. With the large number of different modifications being discovered, there is a need to document this sort of information in databases. PTM information can be collected through experimental means or predicted from high-quality, manually curated data. Numerous databases have been created, often with a focus on certain taxonomic groups (e.g. human proteins) or other features.

List of resources

Tools

List of software for visualization of proteins and their PTMs

Case examples

See also

References

  1. Pratt, Charlotte W.; Voet, Judith G.; Voet, Donald (2006). Fundamentals of Biochemistry: Life at the Molecular Level (2nd ed.). Hoboken, NJ: Wiley. ISBN   9780471214953. OCLC   1280801548. Alt URL
  2. Khoury GA, Baliban RC, Floudas CA (September 2011). "Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database". Scientific Reports . 1: 90. Bibcode:2011NatSR...1...90K. doi:10.1038/srep00090. PMC   3201773 . PMID   22034591.
  3. Lodish H, Berk A, Zipursky SL, et al. (2000). "17.6, Post-Translational Modifications and Quality Control in the Rough ER". Molecular Cell Biology (4th ed.). New York: W. H. Freeman. ISBN   978-0-7167-3136-8.
  4. Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A (2006). "Protein carbonylation, cellular dysfunction, and disease progression". Journal of Cellular and Molecular Medicine . 10 (2): 389–406. doi:10.1111/j.1582-4934.2006.tb00407.x. PMC   3933129 . PMID   16796807.
  5. Grimsrud PA, Xie H, Griffin TJ, Bernlohr DA (August 2008). "Oxidative stress and covalent modification of protein with bioactive aldehydes". The Journal of Biological Chemistry . 283 (32): 21837–41. doi: 10.1074/jbc.R700019200 . PMC   2494933 . PMID   18445586.
  6. Gianazza E, Crawford J, Miller I (July 2007). "Detecting oxidative post-translational modifications in proteins". Amino Acids. 33 (1): 51–6. doi:10.1007/s00726-006-0410-2. PMID   17021655. S2CID   23819101.
  7. Peana, Massimiliano (19 August 2024). "Interplay of Metal Ions and Posttranslational Modifications in Proteins" . European Journal of Inorganic Chemistry. 27 (27). doi:10.1002/ejic.202400175.
  8. Walsh, Christopher T. (2006). Posttranslational modification of proteins : expanding nature's inventory. Englewood: Roberts and Co. Publ. ISBN   9780974707730.:12–14
  9. Whiteheart SW, Shenbagamurthi P, Chen L, Cotter RJ, Hart GW, et al. (August 1989). "Murine elongation factor 1 alpha (EF-1 alpha) is posttranslationally modified by novel amide-linked ethanolamine-phosphoglycerol moieties. Addition of ethanolamine-phosphoglycerol to specific glutamic acid residues on EF-1 alpha". The Journal of Biological Chemistry. 264 (24): 14334–41. doi: 10.1016/S0021-9258(18)71682-7 . PMID   2569467.
  10. Roy H, Zou SB, Bullwinkle TJ, Wolfe BS, Gilreath MS, Forsyth CJ, Navarre WW, Ibba M (August 2011). "The tRNA synthetase paralog PoxA modifies elongation factor-P with (R)-β-lysine". Nature Chemical Biology. 7 (10): 667–9. doi:10.1038/nchembio.632. PMC   3177975 . PMID   21841797.
  11. Ali I, Conrad RJ, Verdin E, Ott M (February 2018). "Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics". Chem Rev. 118 (3): 1216–1252. doi:10.1021/acs.chemrev.7b00181. PMC   6609103 . PMID   29405707.
  12. Bradbury AF, Smyth DG (March 1991). "Peptide amidation". Trends in Biochemical Sciences. 16 (3): 112–5. doi:10.1016/0968-0004(91)90044-v. PMID   2057999.
  13. Eddé B, Rossier J, Le Caer JP, Desbruyères E, Gros F, Denoulet P (January 1990). "Posttranslational glutamylation of alpha-tubulin". Science. 247 (4938): 83–5. Bibcode:1990Sci...247...83E. doi:10.1126/science.1967194. PMID   1967194.
  14. Walker CS, Shetty RP, Clark K, Kazuko SG, Letsou A, Olivera BM, Bandyopadhyay PK, et al. (March 2001). "On a potential global role for vitamin K-dependent gamma-carboxylation in animal systems. Evidence for a gamma-glutamyl carboxylase in Drosophila". The Journal of Biological Chemistry. 276 (11): 7769–74. doi: 10.1074/jbc.M009576200 . PMID   11110799.
  15. 1 2 3 Chung HS, et al. (January 2013). "Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system". Circulation Research. 112 (2): 382–92. doi:10.1161/CIRCRESAHA.112.268680. PMC   4340704 . PMID   23329793.
  16. "The Advanced Lipoxidation End-Product Malondialdehyde-Lysine in Aging and Longevity" PMID 33203089 PMC7696601
  17. Jaisson S, Pietrement C, Gillery P (November 2011). "Carbamylation-derived products: bioactive compounds and potential biomarkers in chronic renal failure and atherosclerosis". Clinical Chemistry. 57 (11): 1499–505. doi: 10.1373/clinchem.2011.163188 . PMID   21768218.
  18. Tan, Minjia; Peng, Chao; Anderson, Kristin A.; Chhoy, Peter; Xie, Zhongyu; Dai, Lunzhi; Park, Jeongsoon; Chen, Yue; Huang, He; Zhang, Yi; Ro, Jennifer; Wagner, Gregory R.; Green, Michelle F.; Madsen, Andreas S.; Schmiesing, Jessica; Peterson, Brett S.; Xu, Guofeng; Ilkayeva, Olga R.; Muehlbauer, Michael J.; Braulke, Thomas; Mühlhausen, Chris; Backos, Donald S.; Olsen, Christian A.; McGuire, Peter J.; Pletcher, Scott D.; Lombard, David B.; Hirschey, Matthew D.; Zhao, Yingming (April 2014). "Lysine Glutarylation Is a Protein Posttranslational Modification Regulated by SIRT5". Cell Metabolism. 19 (4). doi: 10.1016/j.cmet.2014.03.014 . PMC   4108075 . PMID   24703693.
  19. Peng, Chao; Lu, Zhike; Xie, Zhongyu; Cheng, Zhongyi; Chen, Yue; Tan, Minjia; Luo, Hao; Zhang, Yi; He, Wendy; Yang, Ke; Zwaans, Bernadette M.M.; Tishkoff, Daniel; Ho, Linh; Lombard, David; He, Tong-Chuan; Dai, Junbiao; Verdin, Eric; Ye, Yang; Zhao, Yingming (December 2011). "The First Identification of Lysine Malonylation Substrates and Its Regulatory Enzyme". Molecular & Cellular Proteomics. 10 (12). doi: 10.1074/mcp.M111.012658 . PMC   3237090 . PMID   21908771.
  20. Head, PamelaSara E.; Myung, Sangho; Chen, Yong; Schneller, Jessica L.; Wang, Cindy; Duncan, Nicholas; Hoffman, Pauline; Chang, David; Gebremariam, Abigael; Gucek, Marjan; Manoli, Irini; Venditti, Charles P. (25 May 2022). "Aberrant methylmalonylation underlies methylmalonic acidemia and is attenuated by an engineered sirtuin". Science Translational Medicine. 14 (646). doi:10.1126/scitranslmed.abn4772. PMC   10468269 . PMID   35613279.
  21. Kang HJ, Baker EN (April 2011). "Intramolecular isopeptide bonds: protein crosslinks built for stress?". Trends in Biochemical Sciences. 36 (4): 229–37. doi:10.1016/j.tibs.2010.09.007. PMID   21055949.
  22. Zhang, Zhihong; Tan, Minjia; Xie, Zhongyu; Dai, Lunzhi; Chen, Yue; Zhao, Yingming (January 2011). "Identification of lysine succinylation as a new post-translational modification". Nature Chemical Biology. 7 (1). doi:10.1038/nchembio.495. PMC   3065206 . PMID   21151122.
  23. Stark GR, Stein WH, Moore X (1960). "Reactions of the Cyanate Present in Aqueous Urea with Amino Acids and Proteins". J Biol Chem. 235 (11): 3177–3181. doi: 10.1016/S0021-9258(20)81332-5 .
  24. Van G. Wilson (Ed.) (2004). Sumoylation: Molecular Biology and Biochemistry Archived 2005-02-09 at the Wayback Machine . Horizon Bioscience. ISBN   0-9545232-8-8.
  25. Malakhova OA, Yan M, Malakhov MP, Yuan Y, Ritchie KJ, Kim KI, Peterson LF, Shuai K, Zhang DE (February 2003). "Protein ISGylation modulates the JAK-STAT signaling pathway". Genes & Development. 17 (4): 455–60. doi:10.1101/gad.1056303. PMC   195994 . PMID   12600939.
  26. Klareskog L, Rönnelid J, Lundberg K, Padyukov L, Alfredsson L (2008). "Immunity to citrullinated proteins in rheumatoid arthritis". Annual Review of Immunology. 26: 651–75. doi:10.1146/annurev.immunol.26.021607.090244. PMID   18173373.
  27. Brennan DF, Barford D (March 2009). "Eliminylation: a post-translational modification catalyzed by phosphothreonine lyases". Trends in Biochemical Sciences. 34 (3): 108–14. doi:10.1016/j.tibs.2008.11.005. PMID   19233656.
  28. Rabe von Pappenheim, Fabian; Wensien, Marie; Ye, Jin; Uranga, Jon; Irisarri, Iker; de Vries, Jan; Funk, Lisa-Marie; Mata, Ricardo A.; Tittmann, Kai (April 2022). "Widespread occurrence of covalent lysine–cysteine redox switches in proteins". Nature Chemical Biology. 18 (4): 368–375. doi: 10.1038/s41589-021-00966-5 . PMC   8964421 . PMID   35165445.
  29. Khoury GA, Baliban RC, Floudas CA (September 2011). "Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database". Scientific Reports. 1 (90): 90. Bibcode:2011NatSR...1E..90K. doi:10.1038/srep00090. PMC   3201773 . PMID   22034591.
  30. "Proteome-Wide Post-Translational Modification Statistics". selene.princeton.edu. Archived from the original on 2012-08-30. Retrieved 2011-07-22.
  31. 1 2 Lee TY, Huang HD, Hung JH, Huang HY, Yang YS, Wang TH (January 2006). "dbPTM: an information repository of protein post-translational modification". Nucleic Acids Research. 34 (Database issue): D622-7. doi:10.1093/nar/gkj083. PMC   1347446 . PMID   16381945.
  32. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E (January 2015). "PhosphoSitePlus, 2014: mutations, PTMs and recalibrations". Nucleic Acids Research. 43 (Database issue): D512-20. doi:10.1093/nar/gku1267. PMC   4383998 . PMID   25514926.
  33. 1 2 Goel R, Harsha HC, Pandey A, Prasad TS (February 2012). "Human Protein Reference Database and Human Proteinpedia as resources for phosphoproteome analysis". Molecular BioSystems. 8 (2): 453–63. doi:10.1039/c1mb05340j. PMC   3804167 . PMID   22159132.
  34. Sigrist CJ, Cerutti L, de Castro E, Langendijk-Genevaux PS, Bulliard V, Bairoch A, Hulo N (January 2010). "PROSITE, a protein domain database for functional characterization and annotation". Nucleic Acids Research. 38 (Database issue): D161-6. doi:10.1093/nar/gkp885. PMC   2808866 . PMID   19858104.
  35. Garavelli JS (January 2003). "The RESID Database of Protein Modifications: 2003 developments". Nucleic Acids Research. 31 (1): 499–501. doi:10.1093/nar/gkg038. PMC   165485 . PMID   12520062.
  36. Huang H, Arighi CN, Ross KE, Ren J, Li G, Chen SC, Wang Q, Cowart J, Vijay-Shanker K, Wu CH (January 2018). "iPTMnet: an integrated resource for protein post-translational modification network discovery". Nucleic Acids Research. 46 (1): D542 –D550. doi:10.1093/nar/gkx1104. PMC   5753337 . PMID   2914561.
  37. Audagnotto M, Dal Peraro M (2017-03-31). "In silico prediction tools and molecular modeling". Computational and Structural Biotechnology Journal. 15: 307–319. doi:10.1016/j.csbj.2017.03.004. PMC   5397102 . PMID   28458782.
  38. Wulff-Fuentes E, Berendt RR, Massman L, Danner L, Malard F, Vora J, Kahsay R, Olivier-Van Stichelen S (January 2021). "The human O-GlcNAcome database and meta-analysis". Scientific Data. 8 (1): 25. Bibcode:2021NatSD...8...25W. doi:10.1038/s41597-021-00810-4. PMC   7820439 . PMID   33479245.
  39. Malard F, Wulff-Fuentes E, Berendt RR, Didier G, Olivier-Van Stichelen S (July 2021). "Automatization and self-maintenance of the O-GlcNAcome catalog: a smart scientific database". Database (Oxford). 2021: 1. doi:10.1093/database/baab039. PMC   8288053 . PMID   34279596.
  40. Warnecke A, Sandalova T, Achour A, Harris RA (November 2014). "PyTMs: a useful PyMOL plugin for modeling common post-translational modifications". BMC Bioinformatics. 15 (1): 370. doi: 10.1186/s12859-014-0370-6 . PMC   4256751 . PMID   25431162.
  41. Yang Y, Peng X, Ying P, Tian J, Li J, Ke J, Zhu Y, Gong Y, Zou D, Yang N, Wang X, Mei S, Zhong R, Gong J, Chang J, Miao X (January 2019). "AWESOME: a database of SNPs that affect protein post-translational modifications". Nucleic Acids Research. 47 (D1): D874 –D880. doi:10.1093/nar/gky821. PMC   6324025 . PMID   30215764.
  42. Morris JH, Huang CC, Babbitt PC, Ferrin TE (September 2007). "structureViz: linking Cytoscape and UCSF Chimera". Bioinformatics. 23 (17): 2345–7. doi: 10.1093/bioinformatics/btm329 . PMID   17623706.
  43. "1tp8 - Proteopedia, life in 3D". www.proteopedia.org.
  44. Peana, Massimiliano (19 August 2024). "Interplay of Metal Ions and Posttranslational Modifications in Proteins" . European Journal of Inorganic Chemistry. 27 (27). doi:10.1002/ejic.202400175.