Albumin

Last updated
Serum albumin family
PDB 1ao6 EBI.jpg
Structure of serum albumin. [1] [2]
Identifiers
SymbolSerum_albumin
Pfam PF00273
Pfam clan CL0282
InterPro IPR014760
SMART SM00103
PROSITE PS51438
SCOP2 1ao6 / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
PDB 1ao6 , 1bj5 , 1bke , 1bm0 , 1e78 , 1e7a , 1e7b , 1e7c , 1e7e , 1e7f , 1e7g , 1e7h , 1e7i , 1gni , 1gnj , 1h9z , 1ha2 , 1hk1 , 1hk2 , 1hk3 , 1hk4 , 1hk5 , 1j78 , 1j7e , 1kw2 , 1kxp , 1lot , 1ma9 , 1n5u , 1o9x , 1tf0 , 1uor , 1ysx , 2bx8 , 2bxa , 2bxb , 2bxc , 2bxd , 2bxe , 2bxf , 2bxg , 2bxh , 2bxi , 2bxk , 2bxl , 2bxm , 2bxn , 2bxo , 2bxp , 2bxq , 2i2z , 2i30 , 2vdb , 2vue , 2vuf , 3b9l , 3b9m

Albumin is a family of globular proteins, the most common of which are the serum albumins. All of the proteins of the albumin family are water-soluble, moderately soluble in concentrated salt solutions, and experience heat denaturation. Albumins are commonly found in blood plasma and differ from other blood proteins in that they are not glycosylated. Substances containing albumins are called albuminoids.

Contents

A number of blood transport proteins are evolutionarily related in the albumin family, including serum albumin, alpha-fetoprotein, vitamin D-binding protein and afamin. [3] [4] [5] This family is only found in vertebrates. [6]

Albumins in a less strict sense can mean other proteins that coagulate under certain conditions. See § Other albumin types for lactalbumin, ovalbumin and plant "2S albumin".

Function

Albumins in general are transport proteins that bind to various ligands and carry them around. [6] Human types include:

The four canonical human albumins are arranged on chromosome 4 region 4q13.3 in a tandem manner. [10]

Classification

Albumins found in animals can be divided into six subfamilies by phylogeny. The Vitamin-D binding proteins occupy families 1–3. The other albumins are mixed among each other in families 4–6. ECM1 is in family 6. [6]

In addition to their medical use, serum albumins are valued in biotechnology. Bovine serum albumin is usually used, although versions from humans and genetically-modified rice are also used to reduce animal cruelty.

Other albumin types

A few other proteins are also sometimes called albumins. They are not in the same family as vertebrate albumins:

Structure

The 3D structure of human serum albumin has been determined by X-ray crystallography to a resolution of 2.5 ångströms (250 pm). [1] Albumin is a 65–70 kDa protein.

Albumin comprises three homologous domains that assemble to form a heart-shaped protein. [2] Each domain is a product of two subdomains that possess common structural motifs. [2] The principal regions of ligand binding to human serum albumin are located in hydrophobic cavities in subdomains IIA and IIIA, which exhibit similar chemistry. Structurally, the serum albumins are similar, each domain containing five or six internal disulfide bonds.

Forensic uses

Worldwide, certain traditional Chinese medicines contain wild bear bile, banned under CITES legislation. Dip sticks, similar to common pregnancy tests, have been developed to detect the presence of bear albumin in traditional medicine products, indicating that bear bile had been used in their creation. [12]

Terminology

Albumin is pronounced /ˈælbjʊmɪn/ ; formed from Latin: albumen [13] "(egg) white; dried egg white".

See also

Related Research Articles

<span class="mw-page-title-main">Alpha-fetoprotein</span> Fetal analogue of serum albumin

Alpha-fetoprotein is a protein that in humans is encoded by the AFP gene. The AFP gene is located on the q arm of chromosome 4 (4q13.3). Maternal AFP serum level is used to screen for Down syndrome, neural tube defects, and other chromosomal abnormalities.

<span class="mw-page-title-main">Serum protein electrophoresis</span> Laboratory test

Serum protein electrophoresis is a laboratory test that examines specific proteins in the blood called globulins. The most common indications for a serum protein electrophoresis test are to diagnose or monitor multiple myeloma, a monoclonal gammopathy of uncertain significance (MGUS), or further investigate a discrepancy between a low albumin and a relatively high total protein. Unexplained bone pain, anemia, proteinuria, chronic kidney disease, and hypercalcemia are also signs of multiple myeloma, and indications for SPE. Blood must first be collected, usually into an airtight vial or syringe. Electrophoresis is a laboratory technique in which the blood serum is applied to either an acetate membrane soaked in a liquid buffer, or to a buffered agarose gel matrix, or into liquid in a capillary tube, and exposed to an electric current to separate the serum protein components into five major fractions by size and electrical charge: serum albumin, alpha-1 globulins, alpha-2 globulins, beta 1 and 2 globulins, and gamma globulins.

The globulins are a family of globular proteins that have higher molecular weights than albumins and are insoluble in pure water but dissolve in dilute salt solutions. Some globulins are produced in the liver, while others are made by the immune system. Globulins, albumins, and fibrinogen are the major blood proteins. The normal concentration of globulins in human blood is about 2.6-3.5 g/dL.

<span class="mw-page-title-main">Transcortin</span> Protein found in humans

Transcortin, also known as corticosteroid-binding globulin (CBG) or serpin A6, is a protein produced in the liver in animals. In humans it is encoded by the SERPINA6 gene. It is an alpha-globulin.

alpha-2-Macroglobulin Large plasma protein found in the blood

α2-Macroglobulin (α2M) or alpha-2-macroglobulin is a large plasma protein found in the blood. It is mainly produced by the liver, and also locally synthesized by macrophages, fibroblasts, and adrenocortical cells. In humans it is encoded by the A2M gene.

Blood-proteins, also termed plasma proteins, are proteins present in blood plasma. They serve many different functions, including transport of lipids, hormones, vitamins and minerals in activity and functioning of the immune system. Other blood proteins act as enzymes, complement components, protease inhibitors or kinin precursors. Contrary to popular belief, haemoglobin is not a blood protein, as it is carried within red blood cells, rather than in the blood serum.

<span class="mw-page-title-main">Serum albumin</span> Type of globular protein produced by the liver

Serum albumin, often referred to simply as blood albumin, is an albumin found in vertebrate blood. Human serum albumin is encoded by the ALB gene. Other mammalian forms, such as bovine serum albumin, are chemically similar.

<span class="mw-page-title-main">Bovine serum albumin</span> Serum albumin protein derived from cows

Bovine serum albumin is a serum albumin protein derived from cows. It is often used as a protein concentration standard in lab experiments.

<span class="mw-page-title-main">Human serum albumin</span> Albumin found in human blood

Human serum albumin is the serum albumin found in human blood. It is the most abundant protein in human blood plasma; it constitutes about half of serum protein. It is produced in the liver. It is soluble in water, and it is monomeric.

<span class="mw-page-title-main">Fetuin</span>

Fetuins are blood proteins that are made in the liver and secreted into the bloodstream. They belong to a large group of binding proteins mediating the transport and availability of a wide variety of cargo substances in the bloodstream. Fetuin-A is a major carrier protein of free fatty acids in the circulation. The best known representative of carrier proteins is serum albumin, the most abundant protein in the blood plasma of adult animals. Fetuin is more abundant in fetal blood, hence the name "fetuin". Fetal bovine serum contains more fetuin than albumin, while adult serum contains more albumin than fetuin.

α-Lactalbumin Protein-coding gene in the species Homo sapiens

α-Lactalbumin, also known as LALBA, is a protein that in humans is encoded by the LALBA gene.

Plasma protein binding refers to the degree to which medications attach to blood proteins within the blood plasma. A drug's efficacy may be affected by the degree to which it binds. The less bound a drug is, the more efficiently it can traverse or diffuse through cell membranes. Common blood proteins that drugs bind to are human serum albumin, lipoprotein, glycoprotein, and α, β‚ and γ globulins.

<span class="mw-page-title-main">Fetal protein</span>

Fetal proteins are high levels of proteins present during the fetal stage of development. Often related proteins assume similar roles after birth or in the embryo, in which case the fetal varieties are called fetal isoforms. Sometimes, the genes coding fetal isoforms occur adjacent to their adult homologues in the genome, and in those cases a locus control region often coordinates the transition from fetal to adult forms. In other cases fetal isoforms can be produced by alternate splicing using fetal exons to produce proteins that differ in only a portion of their amino acid sequence. In some situations the continuing expression of fetal forms can reveal the presence of a disease condition or serve as a treatment for diseases such as sickle cell anemia. Some well known examples include:

α-Parinaric acid Chemical compound

α-Parinaric acid is a conjugated polyunsaturated fatty acid. Discovered by Tsujimoto and Koyanagi in 1933, it contains 18 carbon atoms and 4 conjugated double bonds. The repeating single bond-double bond structure of α-parinaric acid distinguishes it structurally and chemically from the usual "methylene-interrupted" arrangement of polyunsaturated fatty acids that have double-bonds and single bonds separated by a methylene unit (−CH2−). Because of the fluorescent properties conferred by the alternating double bonds, α-parinaric acid is commonly used as a molecular probe in the study of biomembranes.

<span class="mw-page-title-main">Vitamin D-binding protein</span> Mammalian protein found in Homo sapiens

Vitamin D-binding protein (DBP), also/originally known as gc-globulin, is a protein that in humans is encoded by the GC gene. DBP is genetically the oldest member of the albuminoid family and appeared early in the evolution of vertebrates.

<span class="mw-page-title-main">FABP1</span> Protein-coding gene in the species Homo sapiens

FABP1 is a human gene coding for the protein product FABP1. It is also frequently known as liver-type fatty acid-binding protein (LFABP).

<span class="mw-page-title-main">Afamin</span> Protein-coding gene in the species Homo sapiens

Afamin is a protein that in humans is encoded by the AFM gene.

<span class="mw-page-title-main">Plant lipid transfer proteins</span>

Plant lipid transfer proteins, also known as plant LTPs or PLTPs, are a group of highly-conserved proteins of about 7-9kDa found in higher plant tissues. As its name implies, lipid transfer proteins facilitate the shuttling of phospholipids and other fatty acid groups between cell membranes. LTPs are divided into two structurally related subfamilies according to their molecular masses: LTP1s (9 kDa) and LTP2s (7 kDa). Various LTPs bind a wide range of ligands, including fatty acids with a C10–C18 chain length, acyl derivatives of coenzyme A, phospho- and galactolipids, prostaglandin B2, sterols, molecules of organic solvents, and some drugs.

The liver plays the major role in producing proteins that are secreted into the blood, including major plasma proteins, factors in hemostasis and fibrinolysis, carrier proteins, hormones, prohormones and apolipoprotein:

Peptide therapeutics are peptides or polypeptides which are used to for the treatment of diseases. Naturally occurring peptides may serve as hormones, growth factors, neurotransmitters, ion channel ligands, and anti-infectives; peptide therapeutics mimic such functions. Peptide Therapeutics are seen as relatively safe and well-tolerated as peptides can be metabolized by the body.

References

This article incorporates text from the public domain Pfam and InterPro: IPR014760
  1. 1 2 Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K (June 1999). "Crystal structure of human serum albumin at 2.5 A resolution". Protein Engineering. 12 (6): 439–46. doi:10.1093/protein/12.6.439. PMID   10388840.
  2. 1 2 3 He XM, Carter DC (July 1992). "Atomic structure and chemistry of human serum albumin". Nature. 358 (6383): 209–15. Bibcode:1992Natur.358..209H. doi:10.1038/358209a0. PMID   1630489. S2CID   4353741.
  3. Haefliger DN, Moskaitis JE, Schoenberg DR, Wahli W (October 1989). "Amphibian albumins as members of the albumin, alpha-fetoprotein, vitamin D-binding protein multigene family". Journal of Molecular Evolution. 29 (4): 344–54. Bibcode:1989JMolE..29..344H. doi:10.1007/BF02103621. PMID   2481749. S2CID   1456034.
  4. Schoentgen F, Metz-Boutigue MH, Jollès J, Constans J, Jollès P (June 1986). "Complete amino acid sequence of human vitamin D-binding protein (group-specific component): evidence of a three-fold internal homology as in serum albumin and alpha-fetoprotein". Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology. 871 (2): 189–98. doi:10.1016/0167-4838(86)90173-1. PMID   2423133.
  5. Lichenstein HS, Lyons DE, Wurfel MM, Johnson DA, McGinley MD, Leidli JC, et al. (July 1994). "Afamin is a new member of the albumin, alpha-fetoprotein, and vitamin D-binding protein gene family". The Journal of Biological Chemistry. 269 (27): 18149–54. doi: 10.1016/S0021-9258(17)32429-8 . PMID   7517938.
  6. 1 2 3 Li S, Cao Y, Geng F (2017). "Genome-Wide Identification and Comparative Analysis of Albumin Family in Vertebrates". Evolutionary Bioinformatics Online. 13: 1176934317716089. doi:10.1177/1176934317716089. PMC   5480655 . PMID   28680266.
  7. Farrugia A (January 2010). "Albumin usage in clinical medicine: tradition or therapeutic?". Transfusion Medicine Reviews. 24 (1): 53–63. doi:10.1016/j.tmrv.2009.09.005. PMID   19962575.
  8. "Product Information data sheet" (PDF). Sigma Aldrich.
  9. Mihara E, Hirai H, Yamamoto H, Tamura-Kawakami K, Matano M, Kikuchi A, et al. (February 2016). "Active and water-soluble form of lipidated Wnt protein is maintained by a serum glycoprotein afamin/α-albumin". eLife. 5. doi: 10.7554/eLife.11621 . PMC   4775226 . PMID   26902720.
  10. Nishio H, Heiskanen M, Palotie A, Bélanger L, Dugaiczyk A (May 1996). "Tandem arrangement of the human serum albumin multigene family in the sub-centromeric region of 4q: evolution and chromosomal direction of transcription". Journal of Molecular Biology. 259 (1): 113–9. doi:10.1006/jmbi.1996.0306. PMID   8648639.
  11. Shewry PR, Pandya MJ (1999). "The 2S Albumin Storage Proteins". Seed Proteins . Springer Netherlands. pp.  563–586. doi:10.1007/978-94-011-4431-5_24. ISBN   978-94-011-4431-5.
  12. Peppin L, McEwing R, Webster S, Rogers A, Nicholls D, Ogden R (September 2008). "Development of a field test for the detection of illegal bear products" (PDF). Endangered Species Research. 9 (3): 263–70. doi: 10.3354/esr00131 .
  13. Bostock J. "Pliny the Elder, The Natural History". Historia Naturalis 28, 6, 18.