Human serum albumin

Last updated
blood albumin
ChimeraX rendering of HSA (PDB 1AO6).png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases ALB , ANALBA, FDAH, PRO0883, PRO0903, PRO1341, albumin, HSA, FDAHT, serum albumin
External IDs OMIM: 103600 MGI: 87991 HomoloGene: 405 GeneCards: ALB
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000477

NM_009654

RefSeq (protein)

NP_000468

NP_033784

Location (UCSC) Chr 4: 73.4 – 73.42 Mb Chr 5: 90.61 – 90.62 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Human serum albumin is the serum albumin found in human blood. It is the most abundant protein in human blood plasma; it constitutes about half of serum protein. It is produced in the liver. It is soluble in water, and it is monomeric.[ citation needed ]

Albumin transports hormones, fatty acids, and other compounds, buffers pH, and maintains oncotic pressure, among other functions.

Albumin is synthesized in the liver as preproalbumin, which has an N-terminal peptide that is removed before the nascent protein is released from the rough endoplasmic reticulum. The product, proalbumin, is in turn cleaved in the Golgi apparatus to produce the secreted albumin.

The reference range for albumin concentrations in serum is approximately 35–50 g/L (3.5–5.0 g/dL). [5] It has a serum half-life of approximately 21 days. [6] It has a molecular mass of 66.5 kDa.

The gene for albumin is located on chromosome 4 in locus 4q13.3 and mutations in this gene can result in anomalous proteins. The human albumin gene is 16,961 nucleotides long from the putative 'cap' site to the first poly(A) addition site. It is split into 15 exons that are symmetrically placed within the 3 domains thought to have arisen by triplication of a single primordial domain.

Human serum albumin (HSA) is a highly water-soluble globular monomeric plasma protein with a relative molecular weight of 67 KDa, consisting of 585 amino acid residues, one sulfhydryl group and 17 disulfide bridges. Among nanoparticulate carriers, HSA nanoparticles have long been the center of attention in the pharmaceutical industry due to their ability to bind to various drug molecules, great stability during storage and in vivo usage, no toxicity and antigenicity, biodegradability, reproducibility, scale up of the production process and a better control over release properties. In addition, significant amounts of drug can be incorporated into the particle matrix because of the large number of drug binding sites on the albumin molecule. [7]

Function

Measurement

Serum albumin is commonly measured by recording the change in absorbance upon binding to a dye such as bromocresol green or bromocresol purple. [9]

Reference ranges

The normal range of human serum albumin in adults (> 3 y.o.) is 3.5–5.0  g/dL (35–50 g/L). For children less than three years of age, the normal range is broader, 2.9–5.5 g/dL. [10]

Low albumin (hypoalbuminemia) may be caused by liver disease, nephrotic syndrome, burns, protein-losing enteropathy, malabsorption, malnutrition, late pregnancy, artefact, genetic variations and malignancy.[ citation needed ]

High albumin (hyperalbuminemia) is almost always caused by dehydration. In some cases of retinol (Vitamin A) deficiency, the albumin level can be elevated to high-normal values (e.g., 4.9 g/dL) because retinol causes cells to swell with water. (This is also the reason too much Vitamin A is toxic.) [11] This swelling also likely occurs during treatment with 13-cis retinoic acid (isotretinoin), a pharmaceutical for treating severe acne, amongst other conditions. In lab experiments it has been shown that all-trans retinoic acid down regulates human albumin production. [12]

Pathology

Hypoalbuminemia

Hypoalbuminemia means low blood albumin levels. [13] This can be caused by:

In clinical medicine, hypoalbuminemia significantly correlates with a higher mortality rates in several conditions such as heart failure, post-surgery, COVID-19. [16] [17] [18]

Hyperalbuminemia

Hyperalbuminemia is an increased concentration of albumin in the blood. [19] Typically, this condition is due to dehydration. [19] Hyperalbuminemia has also been associated with high protein diets. [20]

Medical use

Human albumin solution (HSA) is available for medical use, usually at concentrations of 5–25%.

Human albumin is often used to replace lost fluid and help restore blood volume in trauma, burns and surgery patients. There is no strong medical evidence that albumin administration (compared to saline) saves lives for people who have hypovolaemia or for those who are critically ill due to burns or hypoalbuminaemia. [21] It is also not known if there are people who are critically ill that may benefit from albumin. [21] Therefore, the Cochrane Collaboration recommends that it should not be used, except in clinical trials. [21] [22]

In acoustic droplet vaporization (ADV), albumin is sometimes used as a surfactant. ADV has been proposed as a cancer treatment by means of occlusion therapy. [23]

Human serum albumin may be used to potentially reverse drug/chemical toxicity by binding to free drug/agent. [24]

Human albumin may also be used in treatment of decompensated cirrhosis. [25]

Human serum albumin has been used as a component of a frailty index. [15]

Glycation

It has been known for a long time that human blood proteins like hemoglobin [26] and serum albumin [27] [28] may undergo a slow non-enzymatic glycation, mainly by formation of a Schiff base between ε-amino groups of lysine (and sometimes arginine) residues and glucose molecules in blood (Maillard reaction). This reaction can be inhibited in the presence of antioxidant agents. [29] Although this reaction may happen normally, [27] elevated glycoalbumin is observed in diabetes mellitus. [28]

Glycation has the potential to alter the biological structure and function of the serum albumin protein. [30] [31] [32] [33]

Moreover, the glycation can result in the formation of Advanced Glycation End-Products (AGE), which result in abnormal biological effects. Accumulation of AGEs leads to tissue damage via alteration of the structures and functions of tissue proteins, stimulation of cellular responses, through receptors specific for AGE-proteins, and generation of reactive oxygen intermediates. AGEs also react with DNA, thus causing mutations and DNA transposition. Thermal processing of proteins and carbohydrates brings major changes in allergenicity. AGEs are antigenic and represent many of the important neoantigens found in cooked or stored foods. [34] They also interfere with the normal product of nitric oxide in cells. [35]

Although there are several lysine and arginine residues in the serum albumin structure, very few of them can take part in the glycation reaction. [28] [36]

Oxidation

The albumin is the predominant protein in most body fluids, its Cys34 represents the largest fraction of free thiols within body. The albumin Cys34 thiol exists in both reduced and oxidized forms. [37] In plasma of healthy young adults, 70–80% of total HSA contains the free sulfhydryl group of Cys34 in a reduced form or mercaptoalbumin (HSA-SH). [38] However, in pathological states characterized by oxidative stress and during the aging process, the oxidized form, or non-mercaptoalbumin (HNA), could predominate. [39] The albumin thiol reacts with radical hydroxyl (.OH), hydrogen peroxide (H2O2) and the reactive nitrogen species as peroxynitrite (ONOO.), and have been shown to oxidize Cys34 to sulfenic acid derivate (HSA-SOH), it can be recycled to mercapto-albumin; however at high concentrations of reactive species leads to the irreversible oxidation to sulfinic (HSA-SO2H) or sulfonic acid (HSA-SO3H) affecting its structure. [40] Presence of reactive oxygen species (ROS), can induce irreversible structural damage and alter protein activities.[ citation needed ]

Loss via kidneys

In the healthy kidney, albumin's size and negative electric charge exclude it from excretion in the glomerulus. This is not always the case, as in some diseases including diabetic nephropathy, which can sometimes be a complication of uncontrolled or of longer term diabetes in which proteins can cross the glomerulus. The lost albumin can be detected by a simple urine test. [41] Depending on the amount of albumin lost, a patient may have normal renal function, microalbuminuria, or albuminuria.

Interactions

Human serum albumin has been shown to interact with FCGRT. [42]

It might also interact with a yet-unidentified albondin (gp60), a certain pair of gp18/gp30, and some other proteins like osteonectin, hnRNPs, calreticulin, cubilin, and megalin. [43]

See also

Related Research Articles

<span class="mw-page-title-main">Transferrin</span> Mammalian protein found in Homo sapiens

Transferrins are glycoproteins found in vertebrates which bind and consequently mediate the transport of iron (Fe) through blood plasma. They are produced in the liver and contain binding sites for two Fe3+ ions. Human transferrin is encoded by the TF gene and produced as a 76 kDa glycoprotein.

alpha-2-Macroglobulin Large plasma protein found in the blood

α2-Macroglobulin (α2M), or alpha-2-macroglobulin, is a large plasma protein found in the blood. It is mainly produced by the liver, and also locally synthesized by macrophages, fibroblasts, and adrenocortical cells. In humans it is encoded by the A2M gene.

Affinity chromatography is a method of separating a biomolecule from a mixture, based on a highly specific macromolecular binding interaction between the biomolecule and another substance. The specific type of binding interaction depends on the biomolecule of interest; antigen and antibody, enzyme and substrate, receptor and ligand, or protein and nucleic acid binding interactions are frequently exploited for isolation of various biomolecules. Affinity chromatography is useful for its high selectivity and resolution of separation, compared to other chromatographic methods.

<span class="mw-page-title-main">Serum albumin</span> Type of globular protein produced by the liver

Serum albumin, often referred to simply as blood albumin, is an albumin found in vertebrate blood. Human serum albumin is encoded by the ALB gene. Other mammalian forms, such as bovine serum albumin, are chemically similar.

The anion gap is a value calculated from the results of multiple individual medical lab tests. It may be reported with the results of an electrolyte panel, which is often performed as part of a comprehensive metabolic panel.

<span class="mw-page-title-main">Hypoalbuminemia</span> Medical condition

Hypoalbuminemia is a medical sign in which the level of albumin in the blood is low. This can be due to decreased production in the liver, increased loss in the gastrointestinal tract or kidneys, increased use in the body, or abnormal distribution between body compartments. Patients often present with hypoalbuminemia as a result of another disease process such as malnutrition as a result of severe anorexia nervosa, sepsis, cirrhosis in the liver, nephrotic syndrome in the kidneys, or protein-losing enteropathy in the gastrointestinal tract. One of the roles of albumin is being the major driver of oncotic pressure in the bloodstream and the body. Thus, hypoalbuminemia leads to abnormal distributions of fluids within the body and its compartments. As a result, associated symptoms include edema in the lower legs, ascites in the abdomen, and effusions around internal organs. Laboratory tests aimed at assessing liver function diagnose hypoalbuminemia. Once identified, it is a poor prognostic indicator for patients with a variety of different diseases. Yet, it is only treated in very specific indications in patients with cirrhosis and nephrotic syndrome. Treatment instead focuses on the underlying cause of the hypoalbuminemia. Albumin is an acute negative phase respondent and not a reliable indicator of nutrition status.

<span class="mw-page-title-main">Bovine serum albumin</span> Serum albumin protein derived from cows

Bovine serum albumin is a serum albumin protein derived from cows. It is often used as a protein concentration standard in lab experiments.

<span class="mw-page-title-main">Albumin</span> Family of globular proteins

Albumin is a family of globular proteins, the most common of which are the serum albumins. All of the proteins of the albumin family are water-soluble, moderately soluble in concentrated salt solutions, and experience heat denaturation. Albumins are commonly found in blood plasma and differ from other blood proteins in that they are not glycosylated. Substances containing albumins are called albuminoids.

<span class="mw-page-title-main">Glucosepane</span> Chemical compound

Glucosepane is a lysine-arginine protein cross-linking product and advanced glycation end product (AGE) derived from D-glucose. It is an irreversible, covalent cross-link product that has been found to make intermolecular and intramolecular cross-links in the collagen of the extracellular matrix (ECM) and crystallin of the eyes. Covalent protein cross-links irreversibly link proteins together in the ECM of tissues. Glucosepane is present in human tissues at levels 10 to 1000 times higher than any other cross-linking AGE, and is currently considered to be the most important cross-linking AGE.

<span class="mw-page-title-main">Retinol binding protein 4</span> Protein-coding gene in the species Homo sapiens

Retinol binding protein 4, also known as RBP4, is a transporter protein for retinol. RBP4 has a molecular weight of approximately 21 kDa and is encoded by the RBP4 gene in humans. It is mainly, though not exclusively, synthesized in the liver and circulates in the bloodstream as a hepatokine bound to retinol in a complex with transthyretin. RBP4 has been a drug target for ophthalmology research due to its role in vision. RBP4 may also be involved in metabolic diseases as suggested by recent studies.

The neonatal Fc receptor is a protein that in humans is encoded by the FCGRT gene. It is an IgG Fc receptor which is similar in structure to the MHC class I molecule and also associates with beta-2-microglobulin. In rodents, FcRn was originally identified as the receptor that transports maternal immunoglobulin G (IgG) from mother to neonatal offspring via mother's milk, leading to its name as the neonatal Fc receptor. In humans, FcRn is present in the placenta where it transports mother's IgG to the growing fetus. FcRn has also been shown to play a role in regulating IgG and serum albumin turnover. Neonatal Fc receptor expression is up-regulated by the proinflammatory cytokine, TNF, and down-regulated by IFN-γ.

<span class="mw-page-title-main">Phycocyanobilin</span> Chemical compound

Phycocyanobilin is a blue phycobilin, i.e., a tetrapyrrole chromophore found in cyanobacteria and in the chloroplasts of red algae, glaucophytes, and some cryptomonads. Phycocyanobilin is present only in the phycobiliproteins allophycocyanin and phycocyanin, of which it is the terminal acceptor of energy. It is covalently linked to these phycobiliproteins by a thioether bond.

<span class="mw-page-title-main">HMGB1</span> Mammalian protein found in Homo sapiens

High mobility group box 1 protein, also known as high-mobility group protein 1 (HMG-1) and amphoterin, is a protein that in humans is encoded by the HMGB1 gene.

<span class="mw-page-title-main">Vitamin D-binding protein</span> Mammalian protein found in Homo sapiens

Vitamin D-binding protein (DBP), also/originally known as gc-globulin, is a protein that in humans is encoded by the GC gene. DBP is genetically the oldest member of the albuminoid family and appeared early in the evolution of vertebrates.

<span class="mw-page-title-main">FABP1</span> Protein-coding gene in the species Homo sapiens

FABP1 is a human gene coding for the protein product FABP1. It is also frequently known as liver-type fatty acid-binding protein (LFABP).

<span class="mw-page-title-main">Daphnin</span> Chemical compound

Daphnin is a plant toxin with the chemical formula C15H16O9 and is one of the active compounds present in the Eurasian and North African genus Daphne of the Thymelaeaceae, a plant family with a predominantly Southern Hemisphere distribution with concentrations in Australia and tropical Africa.

<span class="mw-page-title-main">3-Deoxyglucosone</span> Chemical compound

3-Deoxyglucosone (3DG) is a sugar that is notable because it is a marker for diabetes. 3DG reacts with protein to form advanced glycation end-products (AGEs), which contribute to diseases such as the vascular complications of diabetes, atherosclerosis, hypertension, Alzheimer's disease, inflammation, and aging.

Ruthenium anti-cancer drugs are coordination complexes of ruthenium complexes that have anticancer properties. They promise to provide alternatives to platinum-based drugs for anticancer therapy. No ruthenium anti-cancer drug has been commercialized.

The endocannabinoid transporters (eCBTs) are transport proteins for the endocannabinoids. Most neurotransmitters are water-soluble and require transmembrane proteins to transport them across the cell membrane. The endocannabinoids on the other hand, are non-charged lipids that readily cross lipid membranes. However, since the endocannabinoids are water immiscible, protein transporters have been described that act as carriers to solubilize and transport the endocannabinoids through the aqueous cytoplasm. These include the heat shock proteins (Hsp70s) and fatty acid-binding proteins for anandamide (FABPs). FABPs such as FABP1, FABP3, FABP5, and FABP7 have been shown to bind endocannabinoids. FABP inhibitors attenuate the breakdown of anandamide by the enzyme fatty acid amide hydrolase (FAAH) in cell culture. One of these inhibitors (SB-FI-26), isolated from a virtual library of a million compounds, belongs to a class of compounds that act as an anti-nociceptive agent with mild anti-inflammatory activity in mice. These truxillic acids and their derivatives have been known to have anti-inflammatory and anti-nociceptive effects in mice and are active components of a Chinese herbal medicine used to treat rheumatism and pain in human. The blockade of anandamide transport may, at least in part, be the mechanism through which these compounds exert their anti-nociceptive effects.

Peptide therapeutics are peptides or polypeptides which are used to for the treatment of diseases. Naturally occurring peptides may serve as hormones, growth factors, neurotransmitters, ion channel ligands, and anti-infectives; peptide therapeutics mimic such functions. Peptide Therapeutics are seen as relatively safe and well-tolerated as peptides can be metabolized by the body.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000163631 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000029368 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Harmonisation of Reference Intervals" (PDF). pathologyharmony.co.uk. Pathology Harmony. Archived from the original (PDF) on 2 August 2013. Retrieved 23 June 2013.
  6. "Hypoalbuminemia: Background, Pathophysiology, Etiology". Medscape Reference. 2019-11-10. Retrieved 2019-12-22.
  7. Kouchakzadeh H, Shojaosadati SA, Shokri F (September 2014). "Efficient loading and entrapment of tamoxifen in human serum albumin based nanoparticulate delivery system by a modified desolvation technique". Chemical Engineering Research and Design. 92 (9): 1681–1692. doi:10.1016/j.cherd.2013.11.024.
  8. di Masi A, Leboffe L, Polticelli F, Tonon F, Zennaro C, Caterino M, et al. (September 2018). "Human Serum Albumin Is an Essential Component of the Host Defense Mechanism Against Clostridium difficile Intoxication". The Journal of Infectious Diseases. 218 (9): 1424–1435. doi: 10.1093/infdis/jiy338 . PMID   29868851.
  9. "Albumin: analyte monograph" (PDF). Association for Clinical Biochemistry and Laboratory Medicine. Archived from the original (PDF) on 13 November 2012. Retrieved 23 June 2013.
  10. "Normal Ranges for Common Laboratory Tests". Archived from the original on 2013-01-14. Retrieved 2007-12-06.{{cite web}}: CS1 maint: bot: original URL status unknown (link) Rush University
  11. Pasantes-Morales H, Wright CE, Gaull GE (December 1984). "Protective effect of taurine, zinc and tocopherol on retinol-induced damage in human lymphoblastoid cells". The Journal of Nutrition. 114 (12): 2256–2261. doi:10.1093/jn/114.12.2256. PMID   6502269.
  12. Masaki T, Matsuura T, Ohkawa K, Miyamura T, Okazaki I, Watanabe T, Suzuki T (July 2006). "All-trans retinoic acid down-regulates human albumin gene expression through the induction of C/EBPbeta-LIP". The Biochemical Journal. 397 (2): 345–353. doi:10.1042/BJ20051863. PMC   1513275 . PMID   16608438.
  13. Anderson DM (2000). Dorland's illustrated medical dictionary (29th ed.). Philadelphia [u.a.]: Saunders. p.  860. ISBN   978-0721682617.
  14. Zerbato V, Sanson G, De Luca M, Di Bella S, di Masi A, Caironi P, et al. (2022-04-20). "The Impact of Serum Albumin Levels on COVID-19 Mortality". Infectious Disease Reports. 14 (3): 278–286. doi: 10.3390/idr14030034 . ISSN   2036-7449. PMC   9149867 . PMID   35645213.
  15. 1 2 Green P, Woglom AE, Genereux P, Daneault B, Paradis JM, Schnell S, et al. (September 2012). "The impact of frailty status on survival after transcatheter aortic valve replacement in older adults with severe aortic stenosis: a single-center experience". JACC. Cardiovascular Interventions. 5 (9): 974–981. doi:10.1016/j.jcin.2012.06.011. PMC   3717525 . PMID   22995885.
  16. Uthamalingam S, Kandala J, Daley M, Patvardhan E, Capodilupo R, Moore SA, Januzzi JL (December 2010). "Serum albumin and mortality in acutely decompensated heart failure". American Heart Journal. 160 (6): 1149–1155. doi:10.1016/j.ahj.2010.09.004. PMID   21146671.
  17. Xu R, Hao M, Zhou W, Liu M, Wei Y, Xu J, Zhang W (August 2022). "Preoperative hypoalbuminemia in patients undergoing cardiac surgery: a meta-analysis". Surgery Today. 53 (8): 861–872. doi:10.1007/s00595-022-02566-9. PMID   35933630. S2CID   251369303.
  18. Zerbato V, Sanson G, De Luca M, Di Bella S, di Masi A, Caironi P, et al. (April 2022). "The Impact of Serum Albumin Levels on COVID-19 Mortality". Infectious Disease Reports. 14 (3): 278–286. doi: 10.3390/idr14030034 . PMC   9149867 . PMID   35645213.
  19. 1 2 Busher JT (1990). "Chapter 101: Serum Albumin and Globulin". In Walker HK, Hall WD, Hurst JW (eds.). Clinical methods : the history, physical, and laboratory examinations (3rd ed.). Boston: Butterworths. ISBN   978-0409900774. PMID   21250048.
  20. Mutlu EA, Keshavarzian A, Mutlu GM (June 2006). "Hyperalbuminemia and elevated transaminases associated with high-protein diet". Scandinavian Journal of Gastroenterology. 41 (6): 759–760. doi:10.1080/00365520500442625. PMID   16716979. S2CID   21264934.
  21. 1 2 3 Roberts I, Blackhall K, Alderson P, Bunn F, Schierhout G (November 2011). "Human albumin solution for resuscitation and volume expansion in critically ill patients". The Cochrane Database of Systematic Reviews. 2011 (11): CD001208. doi:10.1002/14651858.CD001208.pub4. hdl: 2299/5243 . PMC   7055200 . PMID   22071799.
  22. Yu YT, Liu J, Hu B, Wang RL, Yang XH, Shang XL, et al. (July 2021). "Expert consensus on the use of human serum albumin in critically ill patients". Chinese Medical Journal. 134 (14): 1639–1654. doi:10.1097/CM9.0000000000001661. PMC   8318641 . PMID   34397592.
  23. Lo AH, Kripfgans OD, Carson PL, Rothman ED, Fowlkes JB (May 2007). "Acoustic droplet vaporization threshold: effects of pulse duration and contrast agent". IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 54 (5): 933–946. doi:10.1109/tuffc.2007.339. PMID   17523558. S2CID   11983041.
  24. Ascenzi P, Leboffe L, Toti D, Polticelli F, Trezza V (August 2018). "Fipronil recognition by the FA1 site of human serum albumin". Journal of Molecular Recognition. 31 (8): e2713. doi:10.1002/jmr.2713. PMID   29656610. S2CID   4894574.
  25. Caraceni P, Riggio O, Angeli P, Alessandria C, Neri S, Foschi FG, et al. (June 2018). "Long-term albumin administration in decompensated cirrhosis (ANSWER): an open-label randomised trial". Lancet. 391 (10138): 2417–2429. doi:10.1016/S0140-6736(18)30840-7. hdl: 2108/208667 . PMID   29861076. S2CID   44120418.
  26. Rahbar S (October 1968). "An abnormal hemoglobin in red cells of diabetics". Clinica Chimica Acta; International Journal of Clinical Chemistry. 22 (2): 296–298. doi:10.1016/0009-8981(68)90372-0. PMID   5687098.
  27. 1 2 Day JF, Thorpe SR, Baynes JW (February 1979). "Nonenzymatically glucosylated albumin. In vitro preparation and isolation from normal human serum". The Journal of Biological Chemistry. 254 (3): 595–597. doi: 10.1016/S0021-9258(17)37845-6 . PMID   762083.
  28. 1 2 3 Iberg N, Flückiger R (October 1986). "Nonenzymatic glycosylation of albumin in vivo. Identification of multiple glycosylated sites". The Journal of Biological Chemistry. 261 (29): 13542–13545. doi: 10.1016/S0021-9258(18)67052-8 . PMID   3759977.
  29. Jakus V, Hrnciarová M, Cársky J, Krahulec B, Rietbrock N (1999). "Inhibition of nonenzymatic protein glycation and lipid peroxidation by drugs with antioxidant activity". Life Sciences. 65 (18–19): 1991–1993. doi:10.1016/S0024-3205(99)00462-2. PMID   10576452.
  30. Mohamadi-Nejad A, Moosavi-Movahedi AA, Hakimelahi GH, Sheibani N (September 2002). "Thermodynamic analysis of human serum albumin interactions with glucose: insights into the diabetic range of glucose concentration". The International Journal of Biochemistry & Cell Biology. 34 (9): 1115–1124. doi:10.1016/S1357-2725(02)00031-6. PMID   12009306.
  31. Shaklai N, Garlick RL, Bunn HF (March 1984). "Nonenzymatic glycosylation of human serum albumin alters its conformation and function". The Journal of Biological Chemistry. 259 (6): 3812–3817. doi: 10.1016/S0021-9258(17)43168-1 . PMID   6706980.
  32. Mendez DL, Jensen RA, McElroy LA, Pena JM, Esquerra RM (December 2005). "The effect of non-enzymatic glycation on the unfolding of human serum albumin". Archives of Biochemistry and Biophysics. 444 (2): 92–99. doi:10.1016/j.abb.2005.10.019. PMID   16309624.
  33. Mohamadi-Nejada A, Moosavi-Movahedi AA, Safariana S, Naderi-Maneshc MH, Ranjbarc B, Farzamid B, Mostafavie H, Larijanif MB, Hakimelahi GH (July 2002). "The thermal analysis of nonezymatic glycosylation of human serum albumin: differential scanning calorimetry and circular dichroism studies". Thermochimica Acta. 389 (1–2): 141–151. doi:10.1016/S0040-6031(02)00006-0.
  34. Kańska U, Boratyński J (2002). "Thermal glycation of proteins by D-glucose and D-fructose". Archivum Immunologiae et Therapiae Experimentalis. 50 (1): 61–66. PMID   11916310.
  35. Rojas A, Romay S, González D, Herrera B, Delgado R, Otero K (February 2000). "Regulation of endothelial nitric oxide synthase expression by albumin-derived advanced glycosylation end products". Circulation Research. 86 (3): E50–E54. doi: 10.1161/01.RES.86.3.e50 . PMID   10679490.
  36. Garlick RL, Mazer JS (May 1983). "The principal site of nonenzymatic glycosylation of human serum albumin in vivo". The Journal of Biological Chemistry. 258 (10): 6142–6146. doi: 10.1016/S0021-9258(18)32384-6 . PMID   6853480.
  37. Kawakami A, Kubota K, Yamada N, Tagami U, Takehana K, Sonaka I, et al. (July 2006). "Identification and characterization of oxidized human serum albumin. A slight structural change impairs its ligand-binding and antioxidant functions". The FEBS Journal. 273 (14): 3346–3357. doi: 10.1111/j.1742-4658.2006.05341.x . PMID   16857017. S2CID   12844381.
  38. Turell L, Carballal S, Botti H, Radi R, Alvarez B (April 2009). "Oxidation of the albumin thiol to sulfenic acid and its implications in the intravascular compartment". Brazilian Journal of Medical and Biological Research = Revista Brasileira de Pesquisas Medicas e Biologicas. 42 (4): 305–311. doi: 10.1590/s0100-879x2009000400001 . PMID   19330257.
  39. Rosas-Díaz M, Camarillo-Cadena M, Hernández-Arana A, Ramón-Gallegos E, Medina-Navarro R (June 2015). "Antioxidant capacity and structural changes of human serum albumin from patients in advanced stages of diabetic nephropathy and the effect of the dialysis". Molecular and Cellular Biochemistry. 404 (1–2): 193–201. doi:10.1007/s11010-015-2378-2. PMID   25758354. S2CID   6718332.
  40. Matsuyama Y, Terawaki H, Terada T, Era S (August 2009). "Albumin thiol oxidation and serum protein carbonyl formation are progressively enhanced with advancing stages of chronic kidney disease". Clinical and Experimental Nephrology. 13 (4): 308–315. doi:10.1007/s10157-009-0161-y. PMID   19363646. S2CID   20886185.
  41. "Microalbumin Urine Test". WebMD.
  42. Chaudhury C, Mehnaz S, Robinson JM, Hayton WL, Pearl DK, Roopenian DC, Anderson CL (February 2003). "The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan". The Journal of Experimental Medicine. 197 (3): 315–322. doi:10.1084/jem.20021829. PMC   2193842 . PMID   12566415.
  43. Merlot AM, Kalinowski DS, Richardson DR (2014). "Unraveling the mysteries of serum albumin-more than just a serum protein". Frontiers in Physiology. 5: 299. doi: 10.3389/fphys.2014.00299 . PMC   4129365 . PMID   25161624.

Further reading