DcGO

Last updated
dcGO
Content
DescriptionThe dcGO database is a comprehensive domain-centric ontology resource for protein domains.
Data types
captured
Protein domains, ontologies
Contact
Research center University of Bristol
Primary citation PMID   23161684
Access
Website The dcGO website
Download URL dcGO DOWNLOAD
Tools
Web PSnet, sTOL, dcGOR, dcGO Predictor, dcGO Enrichment

dcGO is a comprehensive ontology database for protein domains. [1] As an ontology resource, dcGO integrates Open Biomedical Ontologies from a variety of contexts, ranging from functional information like Gene Ontology to others on enzymes and pathways, from phenotype information across major model organisms to information about human diseases and drugs. As a protein domain resource, dcGO includes annotations to both the individual domains and supra-domains (i.e., combinations of two or more successive domains).

Contents

Concepts

There are two key concepts behind dcGO. The first concept is to label protein domains with ontology, for example, with Gene Ontology. That is why it is called dcGO, domain-centric Gene Ontology. The second concept is to use ontology-labeled protein domains for, for example, protein function prediction. Put it in a simple way, the first concept is about how to create dcGO resource, and the second concept is about how to use dcGO resource.

Timelines

Webserver

Recent use of dcGO is to build a domain network from a functional perspective for cross-ontology comparisons, [5] and to combine with species tree of life (sTOL) to provide a phylogenetic context to function and phenotype. [6]

Software

Open-source software dcGOR is developed using R programming language to analyse domain-centric ontologies and annotations. [7] Supported analyses include:

Functionalities under active development are:

See also

References

  1. Fang, H.; Gough, J. (2012). "DcGO: Database of domain-centric ontologies on functions, phenotypes, diseases and more". Nucleic Acids Research. 41 (Database issue): D536 –D544. doi:10.1093/nar/gks1080. PMC   3531119 . PMID   23161684.
  2. De Lima Morais, D. A.; Fang, H.; Rackham, O. J. L.; Wilson, D.; Pethica, R.; Chothia, C.; Gough, J. (2010). "SUPERFAMILY 1.75 including a domain-centric gene ontology method". Nucleic Acids Research. 39 (Database issue): D427 –D434. doi:10.1093/nar/gkq1130. PMC   3013712 . PMID   21062816.
  3. Fang, H.; Gough, J. (2013). "A domain-centric solution to functional genomics via dcGO Predictor". BMC Bioinformatics. 14 (Suppl 3): S9. doi: 10.1186/1471-2105-14-S3-S9 . PMC   3584936 . PMID   23514627.
  4. Radivojac, P.; Clark, W. T.; Oron, T. R.; Schnoes, A. M.; Wittkop, T.; Sokolov, A.; Graim, K.; Funk, C.; Verspoor, K.; Ben-Hur, A.; Pandey, G.; Yunes, J. M.; Talwalkar, A. S.; Repo, S.; Souza, M. L.; Piovesan, D.; Casadio, R.; Wang, Z.; Cheng, J.; Fang, H.; Gough, J.; Koskinen, P.; Törönen, P.; Nokso-Koivisto, J.; Holm, L.; Cozzetto, D.; Buchan, D. W. A.; Bryson, K.; Jones, D. T.; et al. (2013). "A large-scale evaluation of computational protein function prediction". Nature Methods. 10 (3): 221–227. doi:10.1038/nmeth.2340. PMC   3584181 . PMID   23353650.
  5. Fang, H; Gough, J (2013). "A disease-drug-phenotype matrix inferred by walking on a functional domain network". Molecular BioSystems. 9 (7): 1686–96. doi:10.1039/c3mb25495j. PMID   23462907.
  6. Fang, H.; Oates, M. E.; Pethica, R. B.; Greenwood, J. M.; Sardar, A. J.; Rackham, O. J. L.; Donoghue, P. C. J.; Stamatakis, A.; De Lima Morais, D. A.; Gough, J. (2013). "A daily-updated tree of (sequenced) life as a reference for genome research". Scientific Reports. 3: 2015. Bibcode:2013NatSR...3E2015F. doi:10.1038/srep02015. PMC   6504836 . PMID   23778980.
  7. Fang, H (2014). "DcGOR: An R package for analysing ontologies and protein domain annotations". PLOS Computational Biology. 10 (10) e1003929. Bibcode:2014PLSCB..10E3929F. doi: 10.1371/journal.pcbi.1003929 . PMC   4214615 . PMID   25356683.