Sulfone

Last updated
The structure of a sulfone Sulfone.svg
The structure of a sulfone
Dimethyl sulfone, an example of a sulfone Dimethylsulfone-3D-vdW.png
Dimethyl sulfone, an example of a sulfone

In organic chemistry, a sulfone is a organosulfur compound containing a sulfonyl (R−S(=O)2−R’) functional group attached to two carbon atoms. The central hexavalent sulfur atom is double-bonded to each of two oxygen atoms and has a single bond to each of two carbon atoms, usually in two separate hydrocarbon substituents. [1]

Contents

Synthesis and reactions

By oxidation of thioethers and sulfoxides

Sulfones are typically prepared by organic oxidation of thioethers, often referred to as sulfides. Sulfoxides are intermediates in this route. [2] For example, dimethyl sulfide oxidizes to dimethyl sulfoxide and then to dimethyl sulfone. [1]

From SO2

Synthesis of sulfolane by hydrogenation of sulfolene. Sulfolane synthesis.png
Synthesis of sulfolane by hydrogenation of sulfolene.

Sulfur dioxide is a convenient and widely used source of the sulfonyl functional group. Specifically, Sulfur dioxide participates in cycloaddition reactions with dienes. [3] The industrially useful solvent sulfolane is prepared by addition of sulfur dioxide to buta-1,3-diene followed by hydrogenation of the resulting sulfolene. [4]

From sulfonyl and sulfuryl halides

Sulfones are prepared under conditions used for Friedel–Crafts reactions using sources of RSO+
2
derived from sulfonyl halides and sulfonic acid anhydrides. Lewis acid catalysts such as AlCl3 and FeCl3 are required. [5] [6] [7]

Sulfones have been prepared by nucleophilic displacement of halides by sulfinates: [8] In general, relatively nonpolar ("soft") alkylating agents react with sulfinic acids to give sulfones, whereas polarized ("hard") alkylating agents form esters. [9] Allyl, propargyl, [10] and benzyl [11] sulfinates can thermally rearrange to the sulfone, but esters without an activated bond generally do not rearrange so. [12]

Reactions

Sulfone is a relatively inert functional group, typically less oxidizing and 4 bel more acidic than sulfoxides. In the Ramberg–Bäcklund reaction and the Julia olefination, sulfones are converted to alkenes by the elimination of sulfur dioxide. [13] However, sulfones are unstable to bases, eliminating to give an alkene. [14]

Sulfones can also undergo desulfonylation.

Applications

Sulfolane is used to extract valuable aromatic compounds from petroleum. [4]

Polymers

Some polymers containing sulfone groups are useful engineering plastics. They exhibit high strength and resistance to oxidation, corrosion, high temperatures, and creep under stress. For example, some are valuable as replacements for copper in domestic hot water plumbing. [15] Precursors to such polymers are the sulfones bisphenol S and 4,4′-dichlorodiphenyl sulfone.

Pharmacology

Dapsone, an antibiotic used for the treatment of leprosy. Dapsone.svg
Dapsone, an antibiotic used for the treatment of leprosy.

Examples of sulfones in pharmacology include dapsone, a drug formerly used as an antibiotic to treat leprosy, dermatitis herpetiformis, tuberculosis, or pneumocystis pneumonia (PCP). Several of its derivatives, such as promin, have similarly been studied or actually been applied in medicine, but in general sulfones are of far less prominence in pharmacology than for example the sulfonamides. [17] [18]

See also

Related Research Articles

<span class="mw-page-title-main">Organic sulfide</span> Organic compound with an –S– group

In organic chemistry, a sulfide or thioether is an organosulfur functional group with the connectivity R−S−R' as shown on right. Like many other sulfur-containing compounds, volatile sulfides have foul odors. A sulfide is similar to an ether except that it contains a sulfur atom in place of the oxygen. The grouping of oxygen and sulfur in the periodic table suggests that the chemical properties of ethers and sulfides are somewhat similar, though the extent to which this is true in practice varies depending on the application.

<span class="mw-page-title-main">Sulfonic acid</span> Organic compounds with the structure R−S(=O)2−OH

In organic chemistry, sulfonic acid refers to a member of the class of organosulfur compounds with the general formula R−S(=O)2−OH, where R is an organic alkyl or aryl group and the S(=O)2(OH) group a sulfonyl hydroxide. As a substituent, it is known as a sulfo group. A sulfonic acid can be thought of as sulfuric acid with one hydroxyl group replaced by an organic substituent. The parent compound is the parent sulfonic acid, HS(=O)2(OH), a tautomer of sulfurous acid, S(=O)(OH)2. Salts or esters of sulfonic acids are called sulfonates.

Organosulfur chemistry is the study of the properties and synthesis of organosulfur compounds, which are organic compounds that contain sulfur. They are often associated with foul odors, but many of the sweetest compounds known are organosulfur derivatives, e.g., saccharin. Nature is abound with organosulfur compounds—sulfur is vital for life. Of the 20 common amino acids, two are organosulfur compounds, and the antibiotics penicillin and sulfa drugs both contain sulfur. While sulfur-containing antibiotics save many lives, sulfur mustard is a deadly chemical warfare agent. Fossil fuels, coal, petroleum, and natural gas, which are derived from ancient organisms, necessarily contain organosulfur compounds, the removal of which is a major focus of oil refineries.

<span class="mw-page-title-main">Sulfonyl group</span> Chemical group (>S(=O)₂)

In organosulfur chemistry, a sulfonyl group is either a functional group found primarily in sulfones, or a substituent obtained from a sulfonic acid by the removal of the hydroxyl group, similarly to acyl groups.

<span class="mw-page-title-main">Carbodiimide</span> Class of organic compounds with general structure RN=C=NR

In organic chemistry, a carbodiimide is a functional group with the formula RN=C=NR. On Earth they are exclusively synthetic, but in interstellar space the parent compound HN=C=NH has been detected by its maser emissions.

<span class="mw-page-title-main">Sulfoxide</span> Organic compound containing a sulfinyl group (>SO)

In organic chemistry, a sulfoxide, also called a sulphoxide, is an organosulfur compound containing a sulfinyl functional group attached to two carbon atoms. It is a polar functional group. Sulfoxides are oxidized derivatives of sulfides. Examples of important sulfoxides are alliin, a precursor to the compound that gives freshly crushed garlic its aroma, and dimethyl sulfoxide (DMSO), a common solvent.

Sulfur compounds are chemical compounds formed the element sulfur (S). Common oxidation states of sulfur range from −2 to +6. Sulfur forms stable compounds with all elements except the noble gases.

<span class="mw-page-title-main">Thiophenol</span> Chemical compound

Thiophenol is an organosulfur compound with the formula C6H5SH, sometimes abbreviated as PhSH. This foul-smelling colorless liquid is the simplest aromatic thiol. The chemical structures of thiophenol and its derivatives are analogous to phenols, where the oxygen atom in the hydroxyl group (-OH) bonded to the aromatic ring in phenol is replaced by a sulfur atom. The prefix thio- implies a sulfur-containing compound and when used before a root word name for a compound which would normally contain an oxygen atom, in the case of 'thiol' that the alcohol oxygen atom is replaced by a sulfur atom.

Polysulfones are a family of high performance thermoplastics. These polymers are known for their toughness and stability at high temperatures. Technically used polysulfones contain an aryl-SO2-aryl subunit. Due to the high cost of raw materials and processing, polysulfones are used in specialty applications and often are a superior replacement for polycarbonates.

<span class="mw-page-title-main">Sulfinic acid</span> Class of chemical compounds

Sulfinic acids are oxoacids of sulfur with the structure RSO(OH). In these organosulfur compounds, sulfur is pyramidal.

In inorganic chemistry, sulfonyl halide groups occur when a sulfonyl functional group is singly bonded to a halogen atom. They have the general formula RSO2X, where X is a halogen. The stability of sulfonyl halides decreases in the order fluorides > chlorides > bromides > iodides, all four types being well known. The sulfonyl chlorides and fluorides are of dominant importance in this series.

<span class="mw-page-title-main">Sulfenic acid</span> Organosulfur compound of the form R–SOH

In chemistry, a sulfenic acid is an organosulfur compound and oxoacid with the general formula R−S−OH. It is the first member of the family of organosulfur oxoacids, which also include sulfinic acids and sulfonic acids, respectively. The base member of the sulfenic acid series with R = H is hydrogen thioperoxide.

<span class="mw-page-title-main">Dibenzothiophene</span> Chemical compound

Dibenzothiophene (DBT, diphenylene sulfide) is the organosulfur compound consisting of two benzene rings fused to a central thiophene ring. It has the chemical formula C12H8S. It is a colourless solid that is chemically somewhat similar to anthracene. This tricyclic heterocycle, and especially its disubstituted derivative 4,6-dimethyldibenzothiophene are problematic impurities in petroleum.

<span class="mw-page-title-main">Sulfolene</span> Chemical compound

Sulfolene, or butadiene sulfone is a cyclic organic chemical with a sulfone functional group. It is a white, odorless, crystalline, indefinitely storable solid, which dissolves in water and many organic solvents. The compound is used as a source of butadiene.

<span class="mw-page-title-main">Thiosulfinate</span> Functional group

In organosulfur chemistry, thiosulfinate is a functional group consisting of the linkage R-S(O)-S-R. Thiolsulfinates are also named as alkanethiosulfinic acid esters.

<span class="mw-page-title-main">Phenylsulfinic acid</span> Chemical compound

Phenylsulfinic acid is an organosulfur compound with the formula C6H5SO2H. It is a colorless or white crystalline solid that is usually stored in the form of its sodium salt. In aqueous solution it is strongly acidic and is easily oxidized in air. Phenylsulfinic acid and its esters are chiral.

<span class="mw-page-title-main">Sulfinyl halide</span> Class of chemical compounds

Sulfinyl halide have the general formula R−S(O)−X, where X is a halogen. They are intermediate in oxidation level between sulfenyl halides, R−S−X, and sulfonyl halides, R−SO2−X. The best known examples are sulfinyl chlorides, thermolabile, moisture-sensitive compounds, which are useful intermediates for preparation of other sufinyl derivatives such as sulfinamides, sulfinates, sulfoxides, and thiosulfinates. Unlike the sulfur atom in sulfonyl halides and sulfenyl halides, the sulfur atom in sulfinyl halides is chiral, as shown for methanesulfinyl chloride.

Hydroxylamine-<i>O</i>-sulfonic acid Chemical compound

Hydroxylamine-O-sulfonic acid (HOSA) or aminosulfuric acid is the inorganic compound with molecular formula H3NO4S that is formed by the sulfonation of hydroxylamine with oleum. It is a white, water-soluble and hygroscopic, solid, commonly represented by the condensed structural formula H2NOSO3H, though it actually exists as a zwitterion and thus is more accurately represented as +H3NOSO3. It is used as a reagent for the introduction of amine groups (–NH2), for the conversion of aldehydes into nitriles and alicyclic ketones into lactams (cyclic amides), and for the synthesis of variety of nitrogen-containing heterocycles.

<span class="mw-page-title-main">Sulfoxylic acid</span> Chemical compound

Sulfoxylic acid (H2SO2) (also known as hyposulfurous acid or sulfur dihydroxide) is an unstable oxoacid of sulfur in an intermediate oxidation state between hydrogen sulfide and dithionous acid. It consists of two hydroxy groups attached to a sulfur atom. Sulfoxylic acid contains sulfur in an oxidation state of +2. Sulfur monoxide (SO) can be considered as a theoretical anhydride for sulfoxylic acid, but it is not actually known to react with water.

<span class="mw-page-title-main">Diphenyl sulfide</span> Organic compound

Diphenyl sulfide is an organosulfur compound with the chemical formula (C6H5)2S, often abbreviated as Ph2S, where Ph stands for phenyl. It is a colorless liquid with an unpleasant odor. Diphenyl sulfide is an aromatic sulfide. The molecule consists of two phenyl groups attached to a sulfur atom.

References

  1. 1 2 Hornback, Joseph (2006). Organic Chemistry. Australia: Thomson Brooks/Cole. ISBN   978-0-534-38951-2.
  2. Leo A. Paquette, Richard V. C. Carr (1986). "Phenyl Vinyl Sulfone and Sulfoxide". Org. Synth. 64: 157. doi:10.15227/orgsyn.064.0157.
  3. Robert L. Frank and Raymond P. Seven (1949). "Isoprene Cyclic Sulfone". Org. Synth. 29: 59. doi:10.15227/orgsyn.029.0059.
  4. 1 2 Folkins, Hillis O. (2005). "Benzene". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a03_475. ISBN   978-3527306732.
  5. Truce, W. E.; Vriesen; C. W. (1953). "Friedel—Crafts Reactions of Methanesulfonyl Chloride with Benzene and Certain Substituted Benzenes". J. Am. Chem. Soc. 75 (20): 5032–5036. doi:10.1021/ja01116a043.
  6. Répichet, S.; Le Roux, C.; Hernandez, P.; Dubac, J.; Desmurs, J. R. (1999). "Bismuth(III) Trifluoromethanesulfonate: An Efficient Catalyst for the Sulfonylation of Arenes". The Journal of Organic Chemistry. 64 (17): 6479–6482. doi:10.1021/jo9902603.
  7. Truce, W. E.; Milionis, J. P. (1952). "Friedel-Crafts Cyclization of ω-Phenylalkanesulfonyl Chlorides". J. Am. Chem. Soc. 74 (4): 974–977. doi:10.1021/ja01124a031.
  8. C. W. Ferry, J. S. Buck, R. Baltzly (1942). "4,4'-Diaminodiphenylsulfone". Org. Synth. 22: 31. doi:10.15227/orgsyn.022.0031.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. Schubart, Rüdiger. "Sulfinic Acids and Derivatives". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. p. 682. doi:10.1002/14356007.a25_461. ISBN   978-3527306732.{{cite encyclopedia}}: CS1 maint: multiple names: authors list (link)
  10. S. Braverman and T. Pechenick, Tetrahedron Lett., 43, 499 (2002). doi : 10.1016/S0040-4039(01)02174-8
  11. Kenyon, Joseph; Phillips, Henry (3 June 1930). "The optical instability of tercovalent carbonium kations". Journal of the Chemical Society. doi:10.1039/JR9300001676.
  12. Cope, Arthur C.; Morrison, Dwight E.; Field, Lamar (Jan 1950) [21 June 1949]. "Thermal rearrangement of allyl-type sulfoxides, sulfones and sulfinates". Journal of the ACS. 72: 60. doi:10.1021/ja01157a018.
  13. Carey, Francis A.; Sundberg, Richard J. (2007). Advanced Organic Chemistry. Berlin: Springer. ISBN   978-0-387-68354-6.
  14. Smith (2020), March's Organic Chemistry, rxn. 17-10.
  15. Fink, Johannes (2008). High Performance Polymers. Norwich: William Andrew. ISBN   978-0-8155-1580-7.
  16. Thomas L. Lemke (2008). Foye's Principles of Medicinal Chemistry. Lippincott Williams & Wilkins. p. 1142. ISBN   9780781768795. Archived from the original on 2016-03-04.
  17. Craig, Charles R.; Stitzel, Robert E. (2004). Modern Pharmacology with Clinical Applications. Hagerstwon: Lippincott Williams & Wilkins. ISBN   978-0-7817-3762-3.
  18. Drill, Victor Alexander; Di Palma, Joseph R. (1971). Drill's Pharmacology in Medicine. New York: McGraw-Hill. ISBN   978-0-07-017006-3.