Bisphenol S

Last updated
Bisphenol S
Bisphenol S.svg
Bisphenol S 3D BS-fixed.png
Names
Preferred IUPAC name
4,4′-Sulfonyldiphenol
Other names
BPS, 4,4′-sulfonylbisphenol,
Bis(4-hydroxyphenyl)sulfone
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.001.137 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 201-250-5
KEGG
PubChem CID
UNII
  • InChI=1S/C12H10O4S/c13-9-1-5-11(6-2-9)17(15,16)12-7-3-10(14)4-8-12/h1-8,13-14H Yes check.svgY
    Key: VPWNQTHUCYMVMZ-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C12H10O4S/c13-9-1-5-11(6-2-9)17(15,16)12-7-3-10(14)4-8-12/h1-8,13-14H
    Key: VPWNQTHUCYMVMZ-UHFFFAOYAO
  • O=S(=O)(c1ccc(O)cc1)c2ccc(O)cc2
  • c1cc(ccc1O)S(=O)(=O)c2ccc(cc2)O
Properties
C12H10O4S
Molar mass 250.27 g·mol−1
AppearanceWhite colorless solid; forms needle shaped crystals in water
Density 1.3663 g/cm3
Melting point 245 to 250 °C (473 to 482 °F; 518 to 523 K) [1]
1100 mg/L [2]
Solubility Soluble in ethanol
Hazards
GHS labelling:
GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg
Warning
H319, H361
P201, P202, P264, P280, P281, P305+P351+P338, P308+P313, P337+P313, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Bisphenol S (BPS, dioxydiphenylsulfone) is an organic compound with the formula (HOC6H4)2SO2. It has two phenol functional groups on either side of a sulfonyl group. It is commonly used in curing fast-drying epoxy resin adhesives. It is classified as a bisphenol, and a close molecular analog of bisphenol A (BPA). BPS differentiates from BPA by possessing a sulfone group (SO2) as the central linker of the molecule instead of a dimethylmethylene group (C(CH3)2), which is the case of bisphenol A.

Contents

History

German chemist Ludwig Glutz (1844–1873) first prepared the compound from phenol and hot sulfuric acid in 1867 [3] , designating it oxysulphobenzide. [4] It was used starting in 1869 as a dye. [5]

BPS received the modern name in the late 1950s [6] and is currently common in everyday consumer products. BPS is an analog of BPA that has replaced BPA in a variety of ways, being present in thermal receipt paper, plastics, and indoor dust. [7] After health concerns associated with bisphenol A grew in 2012, BPS began to be used as a replacement. [8]

Use

BPA Free Plastic BPA-Free Bottle.JPG
BPA Free Plastic

BPS is used in curing fast-drying epoxy glues and as a corrosion inhibitor. It is also commonly used as a reactant in polymer reactions.

BPS has become increasingly common as a building block in polyethersulfone and some epoxies, following the public awareness that BPA has estrogen-mimicking properties, and widespread-belief that enough of it remains in the products to be dangerous. However, BPS may have comparable estrogenic effects to BPA. [9] BPS is now used to a variety of common consumer products. [10] [11] In some cases, BPS is used where the legal prohibition on BPA allows products (esp. plastic containers) containing BPS to be labelled "BPA free". [12] BPS also has the advantage of being more stable to heat and light than BPA. [13]

To comply with restrictions and regulations on BPA due to its confirmed toxicity, manufacturers are gradually replacing BPA with other related compounds, mainly bisphenol S, as substitutes in industrial applications. [14]

BPS is also used as an anticorrosive agent in epoxy glues. Chemically, BPS is being used as a reagent in polymer reactions. BPS has also been reported to occur in canned foodstuffs, such as tin cans. [15]

In a 2015 study analyzing BPS in a variety of paper products worldwide, BPS was found in 100% of tickets, mailing envelopes, airplane boarding passes, and airplane luggage tags. In this study, very high concentrations of BPS were detected in thermal receipt samples collected from cities in the United States, Japan, Korea, and Vietnam. The BPS concentrations were large but varied greatly, from a few tens of nanograms per gram to several milligrams per gram. Nevertheless, concentrations of BPS used in thermal paper are usually lower compared to those of BPA. [16] Finally, BPS can get into the human body through dermal absorption from handling banknotes. [10]

Health effects

Cardiac effects

Although there is no direct link established between BPS and cardiac disease, it is thought that BPS may operate by a similar mechanism to BPA and could cause cardiac toxicity. [17] In animal studies, BPS has been shown to hinder MI recovery, induce cardiac arrhythmias and cause cardiac developmental deformities. Rats exposed to high doses of BPS were reported to have increased risk of atherosclerosis (a significant risk factor in cardiac disease) due to BPS inducing synthesis of cholesterol in peripheral tissues. [17]

Neurobehavioral effects

BPS has the potential to have an effect on a wide range of neurological functions. A recent study showed that exposure to BPS during pregnancy may disrupt thyroid hormone levels. These are important in foetal neurodevelopment and prenatal exposure to BPS has been linked to impaired psychomotor development in children. In a study using human embryonic stem cells, BPS was shown to cause a reduction in length of neurites in neuron-like cells. This disruption could lead to neurobehavioral problems such as ASD. [18]

The mechanism of the neurological impact of BPS is thought to be related to its oestrogenic effect which can interfere in the levels and action of thyroid hormone, which is essential for normal development of the nervous system; it regulates migration and differentiation of neural cells, synaptogenesis and myelination. [18]

Effects on obesity

It has been proposed that BPS has the potential to affect body weight, and several studies have found a correlation between exposure to bisphenols and increased body weight. [19] This is thought to be due to an accumulation of lipids in adipocytes i.e. a build-up of fat in fat cells. [19] It has also been suggested that BPS leads to the formation of new adipocytes as exposure to it increases the expression of related markers. [19] A correlation between exposure to BPS before birth and being overweight has been found in mice, although this was only found when they were also fed a high fat diet. [19]

The pathway through which BPS acts on cells to increase body weight is suggested to be different to the pathway through which BPA acts, even though they have very similar chemical structures. [19]

Only one study has demonstrated a decrease in body weight after BPS exposure, and the affected mice quickly regained the weight they had lost. [19]

Other metabolic effects

BPS levels in the human body can be measured in the urine. In one study of children, there was a significant correlation between urinary levels of BPS and insulin resistance, abnormal kidney function and abnormal vascular function. [19]

It has been suggested that there is a link between gestational diabetes mellitus and urinary BPS. [19] Therefore, exposure to BPS may be a risk factor for developing the condition. [19]

Effects on skeletal development

The effect of long term exposure to BPS is an enrichment of osteoclast differentiation and enhanced development of the embryonic skeletal system. [20]

Effects on early development

BPS, like BPA, can cross the placenta in sheep and alter the endocrine functionality of the placenta. It does this by reducing the maternal serum concentration of trophoblastic proteins. BPS shows almost identical effects on the placenta as BPA, with both BPS and BPS altering almost identical sets of genes. [21]

Fetal exposure to BPS through the placenta, during a critical period, can have negative effects on the developmental programming of the fetus. BPS exposure in the zebrafish model affected development of the hypothalamus and resulted in hyperactive behaviour.

Studies in the Mouse model have shown that exposure to BPS significantly reduced the secretion of testosterone within the mouse fetal testes, with exposure to BPS in female mice also causing a significant fall in egg number, whilst also negatively affecting the quality of oocytes. [21]

Zebrafish and humans share 70% of the same genes that are expressed during development therefore, they are a useful model organism to understand the effects of BPS. [22] Studies in the Zebrafish model have shown that parental exposure to BPS causes disrupted thyroid hormone levels in both the parental generation and F1 generation. Fetal exposure to BPS through the placenta, during a critical period, can have negative effects on the developmental programming of the fetus. Additionally, there is evidence to suggest that embryos with high levels of BPS exhibit teratogenic effects of vital organs such as the heart and liver. Additionally, BPS inhibits the expression of genes within the liver used for the metabolism thus leading to increased stress of the liver through the zebrafish life. [23] Adult zebrafish that are exposed to low levels of BPS during development display hyperactivity due to an exponential increase in neural activity within the hypothalamus. [24]

It is not clear the mechanism of BPS's effect on thyroid hormone levels after human exposure.

Effects on reproductive health

The endocrine disrupting nature of BPS has encouraged investigations into its affinity to estrogenic receptors, showing BPS to be a weak agonist; similar in potency to BPA, which it has come to substitute. Select studies show BPS to be capable of mimicking estradiol, and sometimes being more effective. [25] The estrogenic activity of BPS has been demonstrated through in vivo rodent studies, inducing growth of the womb, with a range of dosages.

These are pathways necessary for cell function, cell cycle regulation, and neuroendocrine induced behaviours which are important for reproduction. BPS has shown to both disrupt signalling and damage DNA. Androgenic and antiandrogenic activity have also been confirmed by BPS disrupting function of the androgen receptors. [26] Studies on zebrafish have shown decreased egg quality, reduced sperm count, an increased frequency of embryo abnormalities, as well as changes in the mass of gonads; [25] suggesting that BPS is a reproductive toxin for both sexes.

The use of Bisphenol-A in manufacturing of household products has been reduced due to its effects as an endocrine disruptor, with research suggesting a disposition to greater deleterious effects to women as compared to men. [27] Research has suggested that BPA and its cousins (BPS,BPF, etc.) have sex dependent effects on development. [28] Male zebrafish exposed to BPS indicated a significant increase in estrogen levels and a decrease in testosterone levels. The decrease in testosterone when exposed to BPS was found to be 200 times more than the decrease in testosterone by BPA. [29] There are increased levels of mRNA transcription of the aromatase gene and increased levels of mRNA transcription of GnRH genes with decreased levels of follicle stimulating hormone and luteinizing hormone. [30] [31]

Bisphenol-S concentrations within populations

A relationship to higher BPS concentrations is linked to individuals within certain socio-economic classes hence placing those individuals at greater risk of possible deleterious effects. Individuals with an annual income of less than $20,000 were found to have the highest concentrations of bisphenol and individuals with an annual income of $75,000 or more to have the lowest concentrations, suggesting a linear relationship between bodily concentrations of BPS and income. [32] Black women had the highest concentrations of BPS with levels 93% higher than those of white women. [33]

Environmental considerations

Recent work suggests that, like BPA, BPS also has endocrine disrupting properties. [7] [34] What makes BPS, and BPA, endocrine disruptors is the presence of the hydroxy group on the benzene ring. This phenol moiety allows BPA and BPS to mimic estradiol. In a study of human urine, BPS was found in 81% of the samples tested. This percentage is comparable to BPA which was found in 95% of urine samples. [35] Another study done on thermal receipt paper shows that 88% of human exposure to BPS is through receipts. [36]

The recycling of thermal paper can introduce BPS into the cycle of paper production and cause BPS contamination of other types of paper products. [37] A recent study showed presence of BPS in more than 70% of the household waste paper samples, potentially indicating spreading of BPS contamination through paper recycling. [16]

BPS is more resistant to environmental degradation than BPA, and although not persistent cannot be characterised as readily biodegradable. [16] [38]

Regulation

In the US it is difficult for consumers to determine if a product contains BPS due to limited labelling regulations. [39] In January 2023 the European Chemicals Agency added bisphenol S to the candidate list for substance of very high concern designation, while it is investigated for reproductive toxicity and endocrine disruption. [40]

Synthesis

Bisphenol S is prepared by the reaction of two equivalents of phenol with one equivalent of sulfuric acid or oleum. [41]

2 C6H5OH + H2SO4 → (C6H4OH)2SO2 + 2 H2O
2 C6H5OH + SO3 → (C6H4OH)2SO2 + H2O

This reaction can also produce 2,4'-sulfonyldiphenol, a common isomeric complication in electrophilic aromatic substitution reactions.

Chemical reaction to bisphenol S Bisphenol synthesis.svg
Chemical reaction to bisphenol S

See also

Related Research Articles

<span class="mw-page-title-main">Endocrine disruptor</span> Chemicals that can interfere with endocrine or hormonal systems

Endocrine disruptors, sometimes also referred to as hormonally active agents, endocrine disrupting chemicals, or endocrine disrupting compounds are chemicals that can interfere with endocrine systems. These disruptions can cause numerous adverse human health outcomes, including alterations in sperm quality and fertility; abnormalities in sex organs‚ endometriosis‚ early puberty‚ altered nervous system or immune function; certain cancers; respiratory problems; metabolic issues; diabetes, obesity, or cardiovascular problems; growth, neurological and learning disabilities, and more. Found in many household and industrial products, endocrine disruptors "interfere with the synthesis, secretion, transport, binding, action, or elimination of natural hormones in the body that are responsible for development, behavior, fertility, and maintenance of homeostasis ."

<span class="mw-page-title-main">Bisphenol A</span> Chemical compound used in plastics manufacturing

Bisphenol A (BPA) is a chemical compound primarily used in the manufacturing of various plastics. It is a colourless solid which is soluble in most common organic solvents, but has very poor solubility in water. BPA is produced on an industrial scale by the condensation reaction of phenol and acetone. Global production in 2022 was estimated to be in the region of 10 million tonnes.

<span class="mw-page-title-main">Carbonless copy paper</span> Coated paper used for copying

Carbonless copy paper (CCP), non-carbon copy paper, or NCR paper is a type of coated paper designed to transfer information written on the front onto sheets beneath. It was developed by chemists Lowell Schleicher and Barry Green, as an alternative to carbon paper and is sometimes misidentified as such.

<span class="mw-page-title-main">Nonylphenol</span> Chemical compound

Nonylphenols are a family of closely related organic compounds composed of phenol bearing a 9 carbon-tail. Nonylphenols can come in numerous structures, all of which may be considered alkylphenols. They are used in manufacturing antioxidants, lubricating oil additives, laundry and dish detergents, emulsifiers, and solubilizers. They are used extensively in epoxy formulation in North America but its use has been phased out in Europe. These compounds are also precursors to the commercially important non-ionic surfactants alkylphenol ethoxylates and nonylphenol ethoxylates, which are used in detergents, paints, pesticides, personal care products, and plastics. Nonylphenol has attracted attention due to its prevalence in the environment and its potential role as an endocrine disruptor and xenoestrogen, due to its ability to act with estrogen-like activity. The estrogenicity and biodegradation heavily depends on the branching of the nonyl sidechain. Nonylphenol has been found to act as an agonist of the GPER (GPR30).

Xenoestrogens are a type of xenohormone that imitates estrogen. They can be either synthetic or natural chemical compounds. Synthetic xenoestrogens include some widely used industrial compounds, such as PCBs, BPA, and phthalates, which have estrogenic effects on a living organism even though they differ chemically from the estrogenic substances produced internally by the endocrine system of any organism. Natural xenoestrogens include phytoestrogens which are plant-derived xenoestrogens. Because the primary route of exposure to these compounds is by consumption of phytoestrogenic plants, they are sometimes called "dietary estrogens". Mycoestrogens, estrogenic substances from fungi, are another type of xenoestrogen that are also considered mycotoxins.

<span class="mw-page-title-main">Thermal paper</span> Paper treated to change colour with heat

Thermal paper is a special fine paper that is coated with a material formulated to change color locally when exposed to heat. It is used in thermal printers, particularly in inexpensive devices such as adding machines, cash registers, and credit card terminals and small, lightweight portable printers.

<span class="mw-page-title-main">Tetrabromobisphenol A</span> Chemical compound

Tetrabromobisphenol A (TBBPA) is a brominated flame retardant. The compound is a white solid, although commercial samples appear yellow. It is one of the most common flame retardants.

<span class="mw-page-title-main">Triclocarban</span> Antimicrobial agent

Triclocarban is an antibacterial chemical once common in, but now phased out of, personal care products like soaps and lotions. It was originally developed for the medical field. Although the mode of action is unknown, TCC can be effective in fighting infections by targeting the growth of bacteria such as Staphylococcus aureus. Additional research seeks to understand its potential for causing antibacterial resistance and its effects on organismal and environmental health.

<span class="mw-page-title-main">Triphenyl phosphate</span> Chemical compound

Triphenyl phosphate (TPhP) is the chemical compound with the formula OP(OC6H5)3. It is the simplest aromatic organophosphate. This colourless solid is the ester (triester) of phosphoric acid and phenol. It is used as a plasticizer and a fire retardant in a wide variety of settings and products.

The bisphenols are a group of industrial chemical compounds related to diphenylmethane; commonly used in the creation of plastics and epoxy resins. Most are based on two hydroxyphenyl functional groups linked by a methylene bridge. Exceptions include bisphenol S, P, and M. "Bisphenol" is a common name; the letter following denotes the variant, which depends on the additional substituents. Bisphenol A is the most popular representative of the group, with millions of metric tons produced globally in the past decade, often simply called "bisphenol".

<span class="mw-page-title-main">Obesogen</span> Foreign chemical compound that disrupts lipid balance causing obesity

Obesogens are certain chemical compounds that are hypothesised to disrupt normal development and balance of lipid metabolism, which in some cases, can lead to obesity. Obesogens may be functionally defined as chemicals that inappropriately alter lipid homeostasis and fat storage, change metabolic setpoints, disrupt energy balance or modify the regulation of appetite and satiety to promote fat accumulation and obesity.

<span class="mw-page-title-main">Risk factors for breast cancer</span> Overview article

Risk factors for breast cancer may be divided into preventable and non-preventable. Their study belongs in the field of epidemiology. Breast cancer, like other forms of cancer, can result from multiple environmental and hereditary risk factors. The term environmental, as used by cancer researchers, means any risk factor that is not genetically inherited.

<span class="mw-page-title-main">Ecotoxicity</span>

Ecotoxicity, the subject of study in the field of ecotoxicology, refers to the biological, chemical or physical stressors that affect ecosystems. Such stressors can occur in the natural environment at densities, concentrations, or levels high enough to disrupt natural biochemical and physiological behavior and interactions. This ultimately affects all living organisms that comprise an ecosystem.

<span class="mw-page-title-main">Reproductive toxicity</span> A hazard associated with chemical substances

Reproductive toxicity refers to the potential risk from a given chemical, physical or biologic agent to adversely affect both male and female fertility as well as offspring development. Reproductive toxicants may adversely affect sexual function, ovarian failure, fertility as well as causing developmental toxicity in the offspring. Lowered effective fertility related to reproductive toxicity relates to both male and female effects alike and is reflected in decreased sperm counts, semen quality and ovarian failure.

<span class="mw-page-title-main">Tris(1,3-dichloro-2-propyl)phosphate</span> Chemical compound

Tris(1,3-dichloroisopropyl)phosphate (TDCPP) is a chlorinated organophosphate. Organophosphate chemicals have a wide variety of applications and are used as flame retardants, pesticides, plasticizers, and nerve gases. TDCPP is structurally similar to several other organophosphate flame retardants, such as tris(2-chloroethyl) phosphate (TCEP) and tris(chloropropyl)phosphate (TCPP). TDCPP and these other chlorinated organophosphate flame retardants are all sometimes referred to as "chlorinated tris".

Xenohormones or environmental hormones are compounds produced outside of the human body which exhibit endocrine hormone-like properties. They may be either of natural origin, such as phytoestrogens, which are derived from plants, or of synthetic origin. These compounds can cause endocrine disruption by multiple mechanisms including acting directly on hormone receptors, affecting the levels of natural hormones in the body, and by altering the expression of hormone receptors. The most commonly occurring xenohormones are xenoestrogens, which mimic the effects of estrogen. Other xenohormones include xenoandrogens and xenoprogesterones. Xenohormones are used for a variety of purposes including contraceptive & hormonal therapies, and agriculture. However, exposure to certain xenohormones early in childhood development can lead to a host of developmental issues including infertility, thyroid complications, and early onset of puberty. Exposure to others later in life has been linked to increased risks of testicular, prostate, ovarian, and uterine cancers.

<span class="mw-page-title-main">4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene</span> Chemical compound

4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) is a metabolite of bisphenol A (BPA). MBP has potent estrogenic activity in vitro and in vivo, up to thousandfold stronger than BPA. It may also play a role in neuronal cell apoptosis and may increase risk for several forms of cancer.

<span class="mw-page-title-main">Bisphenol F</span> Chemical compound

Bisphenol F is an organic compound with the chemical formula (HOC
6
H
4
)
2
CH
2
. It is structurally related to bisphenol A (BPA), a popular precursor for forming plastics, as both belong to the category of molecules known as bisphenols, which feature two phenol groups connected via a linking group. In BPF, the two aromatic rings are linked by a methylene connecting group. In response to concern about the health effects of BPA, BPF is increasingly used as a substitute for BPA.

<span class="mw-page-title-main">Health effects of Bisphenol A</span> Controversy centering on concerns about the biomedical significance of bisphenol A (BPA)

Bisphenol A controversy centers on concerns and debates about the biomedical significance of bisphenol A (BPA), which is a precursor to polymers that are used in some consumer products, including some food containers. The concerns began with the hypothesis that BPA is an endocrine disruptor, i.e. it mimics endocrine hormones and thus has the unintended and possibly far-reaching effects on people in physical contact with the chemical.

Mini-puberty is a transient hormonal activation of the hypothalamic-pituitary-gonadal (HPG) axis that occurs in infants shortly after birth. This period is characterized by a surge in the secretion of gonadotropins and sex steroids, similar to but less intense than the hormonal changes that occur in puberty during adolescence. Mini-puberty plays a crucial role in the early development of the reproductive system and the establishment of secondary sexual characteristics.

References

  1. "4,4′-Sulfonyldiphenol" . Retrieved 4 February 2016.
  2. Pivnenko K, Pedersen GA, Eriksson E, Astrup TF (October 2015). "Bisphenol A and its structural analogues in household waste paper" (PDF). Waste Management. 44: 39–47. Bibcode:2015WaMan..44...39P. doi:10.1016/j.wasman.2015.07.017. PMID   26194879. S2CID   217938141.
  3. Glutz, L. (1868). "Ueber Oxysulfobenzid und einige Derivate desselben". Justus Liebigs Annalen der Chemie. 147 (1): 52–66. doi:10.1002/jlac.18681470107. ISSN   0075-4617.
  4. Watts, Henry (1875). A Dictionary of Chemistry and the Allied Branches of Other Sciences. Second Supplement. Longmans, Green, and Company.
  5. Glausiusz J (April 2014). "Toxicology: The plastics puzzle". Nature. 508 (7496). Nature Publishing Group: 306–8. Bibcode:2014Natur.508..306G. doi: 10.1038/508306a . PMID   24740050.
  6. Paquin, Alfred M. (1958). Epoxydverbindungen und Epoxydharze (in German). Springer Berlin Heidelberg. ISBN   978-3-540-02255-8.
  7. 1 2 Mathew M, Sreedhanya S, Manoj P, Aravindakumar CT, Aravind UK (April 2014). "Exploring the interaction of bisphenol-S with serum albumins: a better or worse alternative for bisphenol a?". The Journal of Physical Chemistry B. 118 (14): 3832–43. doi:10.1021/jp500404u. PMID   24635450.
  8. Liao C, Liu F, Alomirah H, Loi VD, Mohd MA, Moon HB, et al. (June 2012). "Bisphenol S in urine from the United States and seven Asian countries: occurrence and human exposures". Environmental Science & Technology. 46 (12): 6860–6. Bibcode:2012EnST...46.6860L. doi:10.1021/es301334j. PMID   22620267.
  9. Grignard E, Lapenna S, Bremer S (August 2012). "Weak estrogenic transcriptional activities of Bisphenol A and Bisphenol S". Toxicology in Vitro. 26 (5): 727–31. Bibcode:2012ToxVi..26..727G. doi:10.1016/j.tiv.2012.03.013. PMID   22507746.
  10. 1 2 Liao C, Liu F, Kannan K (June 2012). "Bisphenol s, a new bisphenol analogue, in paper products and currency bills and its association with bisphenol a residues". Environmental Science & Technology. 46 (12): 6515–22. Bibcode:2012EnST...46.6515L. doi:10.1021/es300876n. PMID   22591511.
  11. Liao C, Liu F, Guo Y, Moon HB, Nakata H, Wu Q, Kannan K (August 2012). "Occurrence of eight bisphenol analogues in indoor dust from the United States and several Asian countries: implications for human exposure". Environmental Science & Technology. 46 (16): 9138–45. Bibcode:2012EnST...46.9138L. doi:10.1021/es302004w. PMID   22784190.
  12. Jenna Bilbrey (Aug 11, 2014). "BPA-Free Plastic Containers May Be Just as Hazardous". Scientific American .
  13. Kuruto-Niwa R, Nozawa R, Miyakoshi T, Shiozawa T, Terao Y (January 2005). "Estrogenic activity of alkylphenols, bisphenol S, and their chlorinated derivatives using a GFP expression system". Environmental Toxicology and Pharmacology. 19 (1): 121–30. Bibcode:2005EnvTP..19..121K. doi:10.1016/j.etap.2004.05.009. PMID   21783468.
  14. Chen MY, Ike M, Fujita M (February 2002). "Acute toxicity, mutagenicity, and estrogenicity of bisphenol-A and other bisphenols". Environmental Toxicology. 17 (1): 80–6. Bibcode:2002EnTox..17...80C. doi:10.1002/tox.10035. PMID   11847978. S2CID   21979200.
  15. Viñas P, Campillo N, Martínez-Castillo N, Hernández-Córdoba M (May 2010). "Comparison of two derivatization-based methods for solid-phase microextraction-gas chromatography-mass spectrometric determination of bisphenol A, bisphenol S and biphenol migrated from food cans". Analytical and Bioanalytical Chemistry. 397 (1): 115–125. doi:10.1007/s00216-010-3464-7. PMID   20127078. S2CID   11696149.
  16. 1 2 3 Pivnenko K, Pedersen GA, Eriksson E, Astrup TF (October 2015). "Bisphenol A and its structural analogues in household waste paper" (PDF). Waste Management. 44: 39–47. Bibcode:2015WaMan..44...39P. doi:10.1016/j.wasman.2015.07.017. PMID   26194879. S2CID   217938141.
  17. 1 2 Zhang YF, Shan C, Wang Y, Qian LL, Jia DD, Zhang YF, et al. (June 2020). "Cardiovascular toxicity and mechanism of bisphenol A and emerging risk of bisphenol S". The Science of the Total Environment. 723: 137952. Bibcode:2020ScTEn.72337952Z. doi:10.1016/j.scitotenv.2020.137952. PMID   32213405. S2CID   214679291.
  18. 1 2 Naderi M, Kwong RW (September 2020). "A comprehensive review of the neurobehavioral effects of bisphenol S and the mechanisms of action: New insights from in vitro and in vivo models". Environment International. 145: 106078. Bibcode:2020EnInt.14506078N. doi: 10.1016/j.envint.2020.106078 . PMID   32911243.
  19. 1 2 3 4 5 6 7 8 9 Thoene M, Dzika E, Gonkowski S, Wojtkiewicz J (February 2020). "Bisphenol S in Food Causes Hormonal and Obesogenic Effects Comparable to or Worse than Bisphenol A: A Literature Review". Nutrients. 12 (2): 532. doi: 10.3390/nu12020532 . PMC   7071457 . PMID   32092919.
  20. Chin KY, Pang KL, Mark-Lee WF (2018). "A Review on the Effects of Bisphenol A and Its Derivatives on Skeletal Health". International Journal of Medical Sciences. 15 (10): 1043–1050. doi:10.7150/ijms.25634. PMC   6036156 . PMID   30013446.
  21. 1 2 Basak S, Das MK, Duttaroy AK (June 2020). "Plastics derived endocrine-disrupting compounds and their effects on early development". Birth Defects Research. 112 (17): 1308–1325. doi: 10.1002/bdr2.1741 . hdl: 10852/82658 . PMID   32476245.
  22. Catron, Tara R.; Keely, Scott P.; Brinkman, Nichole E.; Zurlinden, Todd J.; Wood, Charles E.; Wright, Justin R.; Phelps, Drake; Wheaton, Emily; Kvasnicka, Allison; Gaballah, Shaza; Lamendella, Regina; Tal, Tamara (2019-02-01). "Host Developmental Toxicity of BPA and BPA Alternatives Is Inversely Related to Microbiota Disruption in Zebrafish". Toxicological Sciences. 167 (2): 468–483. doi:10.1093/toxsci/kfy261. ISSN   1096-0929. PMID   30321396.
  23. Moreman, John; Lee, Okhyun; Trznadel, Maciej; David, Arthur; Kudoh, Tetsuhiro; Tyler, Charles R. (2017-11-07). "Acute Toxicity, Teratogenic, and Estrogenic Effects of Bisphenol A and Its Alternative Replacements Bisphenol S, Bisphenol F, and Bisphenol AF in Zebrafish Embryo-Larvae". Environmental Science & Technology. 51 (21): 12796–12805. Bibcode:2017EnST...5112796M. doi:10.1021/acs.est.7b03283. hdl: 10871/38729 . ISSN   0013-936X. PMID   29016128.
  24. Kinch, Cassandra D.; Ibhazehiebo, Kingsley; Jeong, Joo-Hyun; Habibi, Hamid R.; Kurrasch, Deborah M. (2015-02-03). "Low-dose exposure to bisphenol A and replacement bisphenol S induces precocious hypothalamic neurogenesis in embryonic zebrafish". Proceedings of the National Academy of Sciences of the United States of America. 112 (5): 1475–1480. Bibcode:2015PNAS..112.1475K. doi: 10.1073/pnas.1417731112 . ISSN   1091-6490. PMC   4321238 . PMID   25583509.
  25. 1 2 Žalmanová, T.; Hošková, K.; Nevoral, J.; Prokešová, Š.; Zámostná, K.; Kott, T.; Petr, J. (31 October 2016). "Article". Czech Journal of Animal Science. 61 (10): 433–449. doi: 10.17221/81/2015-cjas .
  26. Siracusa JS, Yin L, Measel E, Liang S, Yu X (August 2018). "Effects of bisphenol A and its analogs on reproductive health: A mini review". Reproductive Toxicology. 79: 96–123. Bibcode:2018RepTx..79...96S. doi:10.1016/j.reprotox.2018.06.005. PMC   6689411 . PMID   29925041.
  27. Vogel, Sarah A. (November 2009). "The Politics of Plastics: The Making and Unmaking of Bisphenol A "Safety"". American Journal of Public Health. 99 (S3): S559–S566. doi:10.2105/AJPH.2008.159228. ISSN   0090-0036. PMC   2774166 . PMID   19890158.
  28. Lee, Jiyun; Moon, Kyong Whan; Ji, Kyunghee (January 2021). "Systematic Review of Exposure to Bisphenol A Alternatives and Its Effects on Reproduction and Thyroid Endocrine System in Zebrafish". Applied Sciences. 11 (4): 1837. doi: 10.3390/app11041837 . ISSN   2076-3417.
  29. Schally, A. V.; Arimura, A.; Kastin, A. J.; Matsuo, H.; Baba, Y.; Redding, T. W.; Nair, R. M. G.; Debeljuk, L.; White, W. F. (1971-09-10). "Gonadotropin-Releasing Hormone: One Polypeptide Regulates Secretion of Luteinizing and Follicle-Stimulating Hormones". Science. 173 (4001): 1036–1038. Bibcode:1971Sci...173.1036S. doi:10.1126/science.173.4001.1036. ISSN   0036-8075. PMID   4938639. S2CID   10052615.
  30. Kallivretaki, Evangelia; Eggen, Rik; Neuhauss, Stephan; Alberti, Martin; Kausch, Ulf; Segner, Helmut (2006-01-01). "Aromatase in zebrafish: A potential target for endocrine disrupting chemicals". Marine Environmental Research. Pollutant Responses in Marine Organisms (PRIMO 13). 62: S187–S190. Bibcode:2006MarER..62S.187K. doi: 10.1016/j.marenvres.2006.04.003 . ISSN   0141-1136. PMID   16698076.
  31. Qiu, Wenhui; Fang, Meijuan; Liu, Jingyu; Fu, Caixia; Zheng, Chunmiao; Chen, Bei; Wang, Ke-Jian (2019-05-15). "In vivo actions of Bisphenol F on the reproductive neuroendocrine system after long-term exposure in zebrafish". Science of the Total Environment. 665: 995–1002. Bibcode:2019ScTEn.665..995Q. doi:10.1016/j.scitotenv.2019.02.154. ISSN   0048-9697. PMID   30893755. S2CID   84844426.
  32. Nelson, Jessica W.; Scammell, Madeleine Kangsen; Hatch, Elizabeth E.; Webster, Thomas F. (2012-03-06). "Social disparities in exposures to bisphenol A and polyfluoroalkyl chemicals: a cross-sectional study within NHANES 2003-2006". Environmental Health. 11 (1): 10. Bibcode:2012EnvHe..11...10N. doi: 10.1186/1476-069X-11-10 . ISSN   1476-069X. PMC   3312862 . PMID   22394520. S2CID   9872387.
  33. Nguyen, Vy Kim; Kahana, Adam; Heidt, Julien; Polemi, Katelyn; Kvasnicka, Jacob; Jolliet, Olivier; Colacino, Justin A. (April 2020). "A comprehensive analysis of racial disparities in chemical biomarker concentrations in United States women, 1999–2014". Environment International. 137: 105496. Bibcode:2020EnInt.13705496N. doi:10.1016/j.envint.2020.105496. PMC   7137529 . PMID   32113086.
  34. Horan TS, Pulcastro H, Lawson C, Gerona R, Martin S, Gieske MC, et al. (September 2018). "Replacement Bisphenols Adversely Affect Mouse Gametogenesis with Consequences for Subsequent Generations". Current Biology. 28 (18): 2948–2954.e3. Bibcode:2018CBio...28E2948H. doi:10.1016/j.cub.2018.06.070. PMC   6156992 . PMID   30220498.
  35. Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, Needham LL (April 2005). "Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population". Environmental Health Perspectives. 113 (4): 391–5. Bibcode:2005EnvHP.113..391C. doi:10.1289/ehp.7534. PMC   1278476 . PMID   15811827.
  36. Konkel, Lindsey (2013). "EHP – Thermal Reaction: The Spread of Bisphenol S via Paper Products". Environmental Health Perspectives. 121 (3): A76. doi:10.1289/ehp.121-a76. PMC   3621184 . PMID   23454568 . Retrieved 4 February 2016.
  37. European Commission-Joint Research Centre. European Union Risk Assessment Report, 4,4′-Isopropylidenediphenol (Bisphenol-A). 2008, available from http://ecb.jrc.ec.europa.eu/documents/ExistingChemicals/RISK_ASSESSMENT/ADDENDUM/bisphenola_add_%5B‍%5D 325.pdf
  38. Ike M, Chen MY, Danzl E, Sei K, Fujita M (2006). "Biodegradation of a variety of bisphenols under aerobic and anaerobic conditions". Water Science and Technology. 53 (6): 153–9. Bibcode:2006WSTec..53..153I. doi:10.2166/wst.2006.189. PMID   16749452.
  39. Howard B. "Chemical in BPA-Free Products Linked to Irregular Heartbeats". National Geographic. Archived from the original on March 3, 2015. Retrieved 29 March 2015.
  40. "Substance Information -4,4'-sulphonyldiphenol - ECHA". echa.europa.eu. European Chemicals Agency . Retrieved 16 February 2023.
  41. METHOD OF PREPARATION OF 4,4′-DIHYDROXYDIPHENYLSULPHONE (Freepatentsonline).