Quinestrol

Last updated
Quinestrol
Quinestrol.svg
Quinestrol molecule ball.png
Clinical data
Trade names Estrovis, others
Other namesQuinoestrol; Quinestrenol; Quinoestrenol; Ethinylestradiol 3-cyclopentyl ether; EECPE; EE2CPE; W-3566; 3-(Cyclopentyloxy)-17α-ethynylestra-1,3,5(10)-trien-17β-ol
AHFS/Drugs.com Micromedex Detailed Consumer Information
Routes of
administration
By mouth
Drug class Estrogen; Estrogen ether
ATC code
  • None
Pharmacokinetic data
Elimination half-life >120 hours (>5 days) [1]
Identifiers
  • (8R,9S,13S,14S,17R)-3-cyclopentyloxy-17-ethynyl-13-methyl-7,8,9,11,12,14,15,16-octahydro-6H-cyclopenta[a]phenanthren-17-ol
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.005.277 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C25H32O2
Molar mass 364.529 g·mol−1
3D model (JSmol)
  • O(c1ccc2c(c1)CC[C@H]3[C@@H]4CC[C@](C#C)(O)[C@@]4(C)CC[C@H]23)C5CCCC5
  • InChI=1S/C25H32O2/c1-3-25(26)15-13-23-22-10-8-17-16-19(27-18-6-4-5-7-18)9-11-20(17)21(22)12-14-24(23,25)2/h1,9,11,16,18,21-23,26H,4-8,10,12-15H2,2H3/t21-,22-,23+,24+,25+/m1/s1 Yes check.svgY
  • Key:PWZUUYSISTUNDW-VAFBSOEGSA-N Yes check.svgY
   (verify)

Quinestrol, also known as ethinylestradiol cyclopentyl ether (EECPE), sold under the brand name Estrovis among others, is an estrogen medication which has been used in menopausal hormone therapy, hormonal birth control, and to treat breast cancer and prostate cancer. [2] [3] It is taken once per week to once per month by mouth. [4] [5] [6] [7]

Contents

Medical uses

Quinestrol has been used as the estrogen component in menopausal hormone therapy and in combined hormonal birth control. [2] [3] It has also occasionally been used in the treatment of breast cancer and prostate cancer, as well as to suppress lactation. [2] [3] [8] On its own as an estrogen, quinestrol was taken once per week by mouth. [4] As a combined birth control pill, it was used together with quingestanol acetate and was taken once per month by mouth. [5] [6] [7]

Pharmacology

Ethinylestradiol (EE), the active form of quinestrol. Ethinylestradiol.svg
Ethinylestradiol (EE), the active form of quinestrol.

Quinestrol is a prodrug of ethinylestradiol (EE), with no estrogenic activity of its own. [3] [9] [10] It is taken orally and has prolonged activity following a single dose, [9] [10] with a very long biological half-life of more than 120 hours (5 days) due to enhanced lipophilicity and storage in fat. [3] [1] Because of its much longer half-life, quinestrol is two to three times as potent as EE. [3] Also because of its long half-life, quinestrol can be taken once a week or once a month. [3] [4] [5] [6] [7]

Following administration, quinestrol is absorbed via the lymphatic system, is stored in adipose tissue, and is gradually released from adipose tissue. [11]

Affinities and estrogenic potencies of estrogen esters and ethers at the estrogen receptors
Estrogen Other names RBA (%)a REP (%)b
ER ERα ERβ
Estradiol E2100100100
Estradiol 3-sulfate E2S; E2-3S ?0.020.04
Estradiol 3-glucuronide E2-3G ?0.020.09
Estradiol 17β-glucuronide E2-17G ?0.0020.0002
Estradiol benzoate EB; Estradiol 3-benzoate101.10.52
Estradiol 17β-acetate E2-17A31–4524 ?
Estradiol diacetate EDA; Estradiol 3,17β-diacetate ?0.79 ?
Estradiol propionate EP; Estradiol 17β-propionate19–262.6 ?
Estradiol valerate EV; Estradiol 17β-valerate2–110.04–21 ?
Estradiol cypionate EC; Estradiol 17β-cypionate ?c4.0 ?
Estradiol palmitate Estradiol 17β-palmitate0 ? ?
Estradiol stearate Estradiol 17β-stearate0 ? ?
Estrone E1; 17-Ketoestradiol115.3–3814
Estrone sulfate E1S; Estrone 3-sulfate20.0040.002
Estrone glucuronide E1G; Estrone 3-glucuronide ?<0.0010.0006
Ethinylestradiol EE; 17α-Ethynylestradiol10017–150129
Mestranol EE 3-methyl ether11.3–8.20.16
QuinestrolEE 3-cyclopentyl ether ?0.37 ?
Footnotes:a = Relative binding affinities (RBAs) were determined via in-vitro displacement of labeled estradiol from estrogen receptors (ERs) generally of rodent uterine cytosol. Estrogen esters are variably hydrolyzed into estrogens in these systems (shorter ester chain length -> greater rate of hydrolysis) and the ER RBAs of the esters decrease strongly when hydrolysis is prevented. b = Relative estrogenic potencies (REPs) were calculated from half-maximal effective concentrations (EC50) that were determined via in-vitro β‐galactosidase (β-gal) and green fluorescent protein (GFP) production assays in yeast expressing human ERα and human ERβ. Both mammalian cells and yeast have the capacity to hydrolyze estrogen esters. c = The affinities of estradiol cypionate for the ERs are similar to those of estradiol valerate and estradiol benzoate (figure). Sources: See template page.
Potencies of oral estrogens [data sources 1]
CompoundDosage for specific uses (mg usually) [lower-alpha 1]
ETD [lower-alpha 2] EPD [lower-alpha 2] MSD [lower-alpha 2] MSD [lower-alpha 3] OID [lower-alpha 3] TSD [lower-alpha 3]
Estradiol (non-micron.) 30≥120–3001206--
Estradiol (micronized) 6–1260–8014–421–2>5>8
Estradiol valerate 6–1260–8014–421–2->8
Estradiol benzoate -60–140----
Estriol ≥20120–150 [lower-alpha 4] 28–1261–6>5-
Estriol succinate -140–150 [lower-alpha 4] 28–1262–6--
Estrone sulfate 1260422--
Conjugated estrogens 5–1260–808.4–250.625–1.25>3.757.5
Ethinylestradiol 200 μg1–2280 μg20–40 μg100 μg100 μg
Mestranol 300 μg1.5–3.0300–600 μg25–30 μg>80 μg-
Quinestrol300 μg2–4500 μg25–50 μg--
Methylestradiol -2----
Diethylstilbestrol 2.520–30110.5–2.0>53
DES dipropionate -15–30----
Dienestrol 530–40420.5–4.0--
Dienestrol diacetate 3–530–60----
Hexestrol -70–110----
Chlorotrianisene ->100-->48-
Methallenestril -400----
Sources and footnotes:
  1. Dosages are given in milligrams unless otherwise noted.
  2. 1 2 3 Dosed every 2 to 3 weeks
  3. 1 2 3 Dosed daily
  4. 1 2 In divided doses, 3x/day; irregular and atypical proliferation.

Chemistry

Quinestrol, also known as ethinylestradiol 3-cyclopentyl ether (EE2CPE), is a synthetic estrane steroid and a derivative of estradiol. [31] [32] It is an estrogen ether, specifically the C3 cyclopentyl ether of ethinylestradiol (17α-ethynylestradiol). [31] [32] Closely related estrogens include mestranol (ethinylestradiol 3-methyl ether) and ethinylestradiol sulfonate (EES; Turisteron; ethinylestradiol 3-isopropylsulfonate). [31] [32]

History

Quinestrol was developed and introduced for medical use in the 1960s. [33]

Society and culture

Generic names

Quinestrol is the generic name of the drug and its INN, USAN, and BAN. [31] [32] [34] [35] It is also known by its former developmental code name W-3566. [31] [32] [34] [35]

Brand names

Quinestrol has been marketed under brand names including Agalacto-Quilea, Basaquines, Eston, Estrovis, Estrovister, Plestrovis, Qui-Lea, Soluna, and Yueketing, among others. [31] [32] [34] [35]

Availability

Quinestrol was marketed as Estrovis in the United States by Parke-Davis and as Qui-Lea in Argentina, [32] but is reportedly not currently marketed. [3] However, it does appear to still be available as an oral contraceptive in combination with progestins in Argentina and China. [35]

One tablet form available in China consists of 6 mg levonorgestrel and 3 mg quinestrol; it is used as a prescription "long-term" oral contraceptive, with one dose taken each month. [35] [36] It is sold under various brand names including Yuèkětíng (Chinese :悦可婷) and Àiyuè (Chinese :艾悦). A version with the racemic norgestrel in place of levonorgestrel also appears to be available. [35]

Veterinary use

Rodents

The Chinese levonorgestrel/quinestrol 2:1 formula is known as EP-1 in veterinary practice. It is known to have some organ-specific effects on the Mongolian gerbil as measured by receptor mRNA expression. [37] Incorporated into baits at a concentration of 50 ppm, EP-1 has been used to control wild Mongolian gerbil populations with some success. [38]

Related Research Articles

<span class="mw-page-title-main">Progestogen (medication)</span> Medication producing effects similar to progesterone

A progestogen, also referred to as a progestagen, gestagen, or gestogen, is a type of medication which produces effects similar to those of the natural female sex hormone progesterone in the body. A progestin is a synthetic progestogen. Progestogens are used most commonly in hormonal birth control and menopausal hormone therapy. They can also be used in the treatment of gynecological conditions, to support fertility and pregnancy, to lower sex hormone levels for various purposes, and for other indications. Progestogens are used alone or in combination with estrogens. They are available in a wide variety of formulations and for use by many different routes of administration. Examples of progestogens include natural or bioidentical progesterone as well as progestins such as medroxyprogesterone acetate and norethisterone.

<span class="mw-page-title-main">Ethinylestradiol</span> Estrogen medication

Ethinylestradiol (EE) is an estrogen medication which is used widely in birth control pills in combination with progestins. In the past, EE was widely used for various indications such as the treatment of menopausal symptoms, gynecological disorders, and certain hormone-sensitive cancers. It is usually taken by mouth but is also used as a patch and vaginal ring.

<span class="mw-page-title-main">Estradiol valerate</span> Chemical compound

Estradiol valerate (EV), sold for use by mouth under the brand name Progynova and Primiwal E4 and for use by injection under the brand names Delestrogen and Progynon Depot among others, is an estrogen medication. It is used in hormone therapy for menopausal symptoms and low estrogen levels, hormone therapy for transgender people, and in hormonal birth control. It is also used in the treatment of prostate cancer. The medication is taken by mouth or by injection into muscle or fat once every 1 to 4 weeks.

<span class="mw-page-title-main">Norethisterone acetate</span> Chemical compound

Norethisterone acetate (NETA), also known as norethindrone acetate and sold under the brand name Primolut-Nor among others, is a progestin medication which is used in birth control pills, menopausal hormone therapy, and for the treatment of gynecological disorders. The medication available in low-dose and high-dose formulations and is used alone or in combination with an estrogen. It is ingested orally.

<span class="mw-page-title-main">Norgestimate</span> Chemical compound

Norgestimate, sold under the brand names Ortho Tri-Cyclen and Previfem among others, is a progestin medication which is used in birth control pills for women and in menopausal hormone therapy. The medication is available in combination with an estrogen and is not available alone. It is taken by mouth.

<span class="mw-page-title-main">Norgestrel</span> Progestin medication used for birth control

Norgestrel is a progestin which is used in birth control pills sold under the brand name Ovral in combination with the estrogen ethinylestradiol and Opill by itself. It is also used in menopausal hormone therapy. It is taken by mouth.

<span class="mw-page-title-main">Gestodene</span> Progestin medication

Gestodene, sold under the brand names Femodene and Minulet among others, is a progestin medication which is used in birth control pills for women. It is also used in menopausal hormone therapy. The medication is available almost exclusively in combination with an estrogen. It is taken by mouth.

<span class="mw-page-title-main">Mestranol</span> Chemical compound

Mestranol, sold under the brand names Enovid, Norinyl, and Ortho-Novum among others, is an estrogen medication which has been used in birth control pills, menopausal hormone therapy, and the treatment of menstrual disorders. It is formulated in combination with a progestin and is not available alone. It is taken by mouth.

Combined injectable contraceptives (CICs) are a form of hormonal birth control for women. They consist of monthly injections of combined formulations containing an estrogen and a progestin to prevent pregnancy.

<span class="mw-page-title-main">Norethisterone enanthate</span> Chemical compound

Norethisterone enanthate (NETE), also known as norethindrone enanthate, is a form of hormonal birth control which is used to prevent pregnancy in women. It is used both as a form of progestogen-only injectable birth control and in combined injectable birth control formulations. It may be used following childbirth, miscarriage, or abortion. The failure rate per year in preventing pregnancy for the progestogen-only formulation is 2 per 100 women. Each dose of this form lasts two months with only up to two doses typically recommended.

<span class="mw-page-title-main">Estriol succinate</span> Chemical compound

Estriol succinate, sold under the brand name Synapause among others, is an estrogen medication which is used in the treatment of menopausal symptoms. It is taken by mouth, in through the vagina, and by injection.

<span class="mw-page-title-main">Conjugated estrogens</span> Estrogen medication

Conjugated estrogens (CEs), or conjugated equine estrogens (CEEs), sold under the brand name Premarin among others, is an estrogen medication which is used in menopausal hormone therapy and for various other indications. It is a mixture of the sodium salts of estrogen conjugates found in horses, such as estrone sulfate and equilin sulfate. CEEs are available in the form of both natural preparations manufactured from the urine of pregnant mares and fully synthetic replications of the natural preparations. They are formulated both alone and in combination with progestins such as medroxyprogesterone acetate. CEEs are usually taken by mouth, but can also be given by application to the skin or vagina as a cream or by injection into a blood vessel or muscle.

<span class="mw-page-title-main">Methylestradiol</span> Chemical compound

Methylestradiol, sold under the brand names Ginecosid, Ginecoside, Mediol, and Renodiol, is an estrogen medication which is used in the treatment of menopausal symptoms. It is formulated in combination with normethandrone, a progestin and androgen/anabolic steroid medication. Methylestradiol is taken by mouth.

<span class="mw-page-title-main">Dienestrol diacetate</span> Chemical compound

Dienestrol diacetate is a synthetic nonsteroidal estrogen of the stilbestrol group related to diethylstilbestrol. It is an ester of dienestrol.

<span class="mw-page-title-main">Diethylstilbestrol dipropionate</span> Chemical compound

Diethylstilbestrol dipropionate (DESDP), or diethylstilbestrol dipropanoate, also known as stilboestrol dipropionate (BANM), is a synthetic nonsteroidal estrogen of the stilbestrol group that was formerly marketed widely throughout Europe. It is an ester of diethylstilbestrol with propionic acid, and is more slowly absorbed in the body than diethylstilbestrol. The medication has been said to be one of the most potent estrogens known.

<span class="mw-page-title-main">Ethinylestradiol sulfonate</span> Estrogenic drug

Ethinylestradiol sulfonate (EES), sold under the brand names Deposiston and Turisteron among others, is an estrogen medication which has been used in birth control pills for women and in the treatment of prostate cancer in men. It has also been investigated in the treatment of breast cancer in women. The medication was combined with norethisterone acetate in birth control pills. EES is taken by mouth once per week.

<span class="mw-page-title-main">Estrogen (medication)</span> Type of medication

An estrogen (E) is a type of medication which is used most commonly in hormonal birth control and menopausal hormone therapy, and as part of feminizing hormone therapy for transgender women. They can also be used in the treatment of hormone-sensitive cancers like breast cancer and prostate cancer and for various other indications. Estrogens are used alone or in combination with progestogens. They are available in a wide variety of formulations and for use by many different routes of administration. Examples of estrogens include bioidentical estradiol, natural conjugated estrogens, synthetic steroidal estrogens like ethinylestradiol, and synthetic nonsteroidal estrogens like diethylstilbestrol. Estrogens are one of three types of sex hormone agonists, the others being androgens/anabolic steroids like testosterone and progestogens like progesterone.

<span class="mw-page-title-main">Estriol (medication)</span> Chemical compound

Estriol (E3), sold under the brand name Ovestin among others, is an estrogen medication and naturally occurring steroid hormone which is used in menopausal hormone therapy. It is also used in veterinary medicine as Incurin to treat urinary incontinence due to estrogen deficiency in dogs. The medication is taken by mouth in the form of tablets, as a cream that is applied to the skin, as a cream or pessary that is applied in the vagina, and by injection into muscle.

The pharmacology of estradiol, an estrogen medication and naturally occurring steroid hormone, concerns its pharmacodynamics, pharmacokinetics, and various routes of administration.

<span class="mw-page-title-main">Polyestriol phosphate</span> Chemical compound

Polyestriol phosphate, sold under the brand names Gynäsan, Klimadurin, and Triodurin, is an estrogen medication which was previously used in menopausal hormone therapy and is no longer available.

References

  1. 1 2 Sitruk-Ware R (6 December 2012). "Pharmacology of Different Administration Routes-Oral vs Transdermal.". In Oettel M, Schillinger E (eds.). Estrogens and Antiestrogens II: Pharmacology and Clinical Application of Estrogens and Antiestrogen. Handbook of Experimental Pharmacology. Vol. 135 / 2. Springer Science & Business Media. pp. 248–. doi:10.1007/978-3-642-60107-1_14. ISBN   978-3-642-60107-1.
  2. 1 2 3 Zink C (1 January 1988). "Quinestrol". Dictionary of Obstetrics and Gynecology. Walter de Gruyter. pp. 204–. ISBN   978-3-11-085727-6.
  3. 1 2 3 4 5 6 7 8 Peterson CM, Udoff LC (1 June 1999). "Primary and secondary hypogonadism in women.". In Meikle AW (ed.). Hormone Replacement Therapy. Springer Science & Business Media. pp. 381–. ISBN   978-1-59259-700-0.
  4. 1 2 3 Quirk Jr JG, Wendel Jr GD (6 December 2012). "Biologic effects of natural and synthetic estrogens.". In Buchsbaum HJ (ed.). The Menopause. Springer Science & Business Media. pp. 60–. ISBN   978-1-4612-5525-3.
  5. 1 2 3 Horsky (6 December 2012). "Contraception". In Horsky J, Presl J (eds.). Ovarian Function and its Disorders: Diagnosis and Therapy. Springer Science & Business Media. pp. 85, 358, 367. ISBN   978-94-009-8195-9.
  6. 1 2 3 Hawkins DF, Elder MG (22 October 2013). "Other Hormal Contraception Procedures". Human Fertility Control: Theory and Practice. Elsevier Science. pp. 92–94. ISBN   978-1-4831-6361-1.
  7. 1 2 3 Bennett JP (18 June 1974). Chemical Contraception. Macmillan International Higher Education. pp. 61–. ISBN   978-1-349-02287-8.
  8. Vorherr H (2 December 2012). The Breast: Morphology, Physiology, and Lactation. Elsevier Science. pp. 201–203. ISBN   978-0-323-15726-1.
  9. 1 2 Epstein JA (1967). "Prolonged menstrual response of patients with gonadal failure following quinestrol administration". International Journal of Fertility. 12 (2): 181–186. PMID   6033895.
  10. 1 2 Giannina T, Meli A (April 1969). "Prolonged oestrogenic activity in rats after single oral administration of ethinyloestradiol-3-cyclopentyl ether". The Journal of Pharmacy and Pharmacology. 21 (4): 271–272. doi:10.1111/j.2042-7158.1969.tb08247.x. PMID   4390151. S2CID   19407816.
  11. Hammond CB, Maxson WS (January 1982). "Current status of estrogen therapy for the menopause". Fertility and Sterility. 37 (1): 5–25. doi:10.1016/S0015-0282(16)45970-4. PMID   6277697.
  12. Lauritzen C (September 1990). "Clinical use of oestrogens and progestogens". Maturitas. 12 (3): 199–214. doi:10.1016/0378-5122(90)90004-P. PMID   2215269.
  13. Lauritzen C (June 1977). "[Estrogen thearpy in practice. 3. Estrogen preparations and combination preparations]" [Estrogen therapy in practice. 3. Estrogen preparations and combination preparations]. Fortschritte Der Medizin (in German). 95 (21): 1388–92. PMID   559617.
  14. Wolf AS, Schneider HP (12 March 2013). Östrogene in Diagnostik und Therapie. Springer-Verlag. pp. 78–. ISBN   978-3-642-75101-1.
  15. Göretzlehner G, Lauritzen C, Römer T, Rossmanith W (1 January 2012). Praktische Hormontherapie in der Gynäkologie. Walter de Gruyter. pp. 44–. ISBN   978-3-11-024568-4.
  16. Knörr K, Beller FK, Lauritzen C (17 April 2013). Lehrbuch der Gynäkologie. Springer-Verlag. pp. 212–213. ISBN   978-3-662-00942-0.
  17. Horský J, Presl J (1981). "Hormonal Treatment of Disorders of the Menstrual Cycle". In Horsky J, Presl J (eds.). Ovarian Function and its Disorders: Diagnosis and Therapy. Springer Science & Business Media. pp. 309–332. doi:10.1007/978-94-009-8195-9_11. ISBN   978-94-009-8195-9.
  18. Pschyrembel W (1968). Praktische Gynäkologie: für Studierende und Ärzte. Walter de Gruyter. pp. 598–599. ISBN   978-3-11-150424-7.
  19. Lauritzen CH (January 1976). "The female climacteric syndrome: significance, problems, treatment". Acta Obstetricia Et Gynecologica Scandinavica. Supplement. 51: 47–61. doi:10.3109/00016347509156433. PMID   779393.
  20. Lauritzen C (1975). "The Female Climacteric Syndrome: Significance, Problems, Treatment". Acta Obstetricia et Gynecologica Scandinavica. 54 (s51): 48–61. doi:10.3109/00016347509156433. ISSN   0001-6349.
  21. Kopera H (1991). "Hormone der Gonaden". Hormonelle Therapie für die Frau. Kliniktaschenbücher. pp. 59–124. doi:10.1007/978-3-642-95670-6_6. ISBN   978-3-540-54554-5. ISSN   0172-777X.
  22. Scott WW, Menon M, Walsh PC (April 1980). "Hormonal Therapy of Prostatic Cancer". Cancer. 45 (Suppl 7): 1929–1936. doi:10.1002/cncr.1980.45.s7.1929. PMID   29603164.
  23. Leinung MC, Feustel PJ, Joseph J (2018). "Hormonal Treatment of Transgender Women with Oral Estradiol". Transgender Health. 3 (1): 74–81. doi:10.1089/trgh.2017.0035. PMC   5944393 . PMID   29756046.
  24. Ryden AB (1950). "Natural and synthetic oestrogenic substances; their relative effectiveness when administered orally". Acta Endocrinologica. 4 (2): 121–39. doi:10.1530/acta.0.0040121. PMID   15432047.
  25. Ryden AB (1951). "The effectiveness of natural and synthetic oestrogenic substances in women". Acta Endocrinologica. 8 (2): 175–91. doi:10.1530/acta.0.0080175. PMID   14902290.
  26. Kottmeier HL (1947). "Ueber blutungen in der menopause: Speziell der klinischen bedeutung eines endometriums mit zeichen hormonaler beeinflussung: Part I". Acta Obstetricia et Gynecologica Scandinavica. 27 (s6): 1–121. doi:10.3109/00016344709154486. ISSN   0001-6349. There is no doubt that the conversion of the endometrium with injections of both synthetic and native estrogenic hormone preparations succeeds, but the opinion whether native, orally administered preparations can produce a proliferation mucosa changes with different authors. PEDERSEN-BJERGAARD (1939) was able to show that 90% of the folliculin taken up in the blood of the vena portae is inactivated in the liver. Neither KAUFMANN (1933, 1935), RAUSCHER (1939, 1942) nor HERRNBERGER (1941) succeeded in bringing a castration endometrium into proliferation using large doses of orally administered preparations of estrone or estradiol. Other results are reported by NEUSTAEDTER (1939), LAUTERWEIN (1940) and FERIN (1941); they succeeded in converting an atrophic castration endometrium into an unambiguous proliferation mucosa with 120–300 oestradiol or with 380 oestrone.
  27. Rietbrock N, Staib AH, Loew D (11 March 2013). Klinische Pharmakologie: Arzneitherapie. Springer-Verlag. pp. 426–. ISBN   978-3-642-57636-2.
  28. Martinez-Manautou J, Rudel HW (1966). "Antiovulatory Activity of Several Synthetic and Natural Estrogens". In Robert Benjamin Greenblatt (ed.). Ovulation: Stimulation, Suppression, and Detection. Lippincott. pp. 243–253.
  29. Herr F, Revesz C, Manson AJ, Jewell JB (1970). "Biological Properties of Estrogen Sulfates". Chemical and Biological Aspects of Steroid Conjugation. pp. 368–408. doi:10.1007/978-3-642-49793-3_8. ISBN   978-3-642-49506-9.
  30. Duncan CJ, Kistner RW, Mansell H (October 1956). "Suppression of ovulation by trip-anisyl chloroethylene (TACE)". Obstetrics and Gynecology. 8 (4): 399–407. PMID   13370006.
  31. 1 2 3 4 5 6 Elks J (14 November 2014). The Dictionary of Drugs: Chemical Data: Chemical Data, Structures and Bibliographies. Springer. pp. 522–. ISBN   978-1-4757-2085-3.
  32. 1 2 3 4 5 6 7 "Quinestrol". Index Nominum 2000: International Drug Directory. Taylor & Francis. January 2000. pp. 905–. ISBN   978-3-88763-075-1.
  33. Medical Gynaecology and Sociology. Medical and Scientific Services Limited. 1967. [...] J. Fertil., 1967, 12, 2) contains 23 papers presented at a symposium on QUINESTROL. Quinestrol is a newly-developed synthetic steroid, and is the cyclo-pentyl ether of a ethinyl oestradiol.
  34. 1 2 3 Morton IK, Hall JM (6 December 2012). Concise Dictionary of Pharmacological Agents: Properties and Synonyms. Springer Science & Business Media. pp. 243–. ISBN   978-94-011-4439-1.
  35. 1 2 3 4 5 6 "Quinestrol". Drugs.com. Archived from the original on 20 October 2015.
  36. "悦可婷 左炔诺孕酮炔雌醚片 6片/盒" [Yueketing Levonorgestrel Ethinylestradiol Tablets 6 Pieces/Box]. Tmall (in Chinese). Archived from the original on 2018-07-16. Retrieved 2018-07-16. When taking the medicine for the first time, take the medicine once after lunch on the fifth day counting from the day of menstrual cramps, and take the second medicine at an interval of 20 days. Afterwards, take the second medicine taking day as the monthly medicine taking date, and take one tablet every month. When changing from short-acting oral contraceptives to long-acting contraceptives, you can take one long-acting contraceptive the next day after taking 22 tablets, and then take one tablet every month on the same day you started taking long-acting contraceptives.
  37. Lv X, Shi D (January 2012). "Combined effects of levonorgestrel and quinestrol on reproductive hormone levels and receptor expression in females of the Mongolian gerbil (Meriones unguiculatus)". Zoological Science. 29 (1): 37–42. doi:10.2108/zsj.29.37. PMID   22233494. S2CID   22347486.
  38. Fu H, Zhang J, Shi D, Wu X (September 2013). "Effects of levonorgestrel-quinestrol (EP-1) treatment on Mongolian gerbil wild populations: a case study". Integrative Zoology. 8 (3): 277–284. doi:10.1111/1749-4877.12018. PMID   24020466.