Fadrozole

Last updated
Fadrozole
Fadrozole structure.svg
Clinical data
Trade names Afema
Routes of
administration
By mouth
Drug class Aromatase inhibitor; Antiestrogen
ATC code
  • None
Legal status
Legal status
  • In general: ℞ (Prescription only)
Identifiers
  • 4-(5,6,7,8-tetrahydroimidazo[1,5-a]pyridin-5-yl)benzonitrile
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C14H13N3
Molar mass 223.279 g·mol−1
3D model (JSmol)
  • C1CC(N2C=NC=C2C1)C3=CC=C(C=C3)C#N
  • InChI=1S/C14H13N3/c15-8-11-4-6-12(7-5-11)14-3-1-2-13-9-16-10-17(13)14/h4-7,9-10,14H,1-3H2 X mark.svgN
  • Key:CLPFFLWZZBQMAO-UHFFFAOYSA-N X mark.svgN
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Fadrozole (INN), sold under the brand name Afema (by Novartis), is a selective, nonsteroidal aromatase inhibitor which is or has been used in Japan for the treatment of breast cancer. [1] [2]

Pharmacodynamics of aromatase inhibitors
GenerationMedicationDosage % inhibitionaClassbIC50c
First Testolactone 250 mg 4x/day p.o. ?Type I ?
100 mg 3x/week i.m. ?
Rogletimide 200 mg 2x/day p.o.
400 mg 2x/day p.o.
800 mg 2x/day p.o.
50.6%
63.5%
73.8%
Type II ?
Aminoglutethimide 250 mg mg 4x/day p.o.90.6%Type II4,500 nM
Second Formestane 125 mg 1x/day p.o.
125 mg 2x/day p.o.
250 mg 1x/day p.o.
72.3%
70.0%
57.3%
Type I30 nM
250 mg 1x/2 weeks i.m.
500 mg 1x/2 weeks i.m.
500 mg 1x/1 week i.m.
84.8%
91.9%
92.5%
Fadrozole1 mg 1x/day p.o.
2 mg 2x/day p.o.
82.4%
92.6%
Type II ?
Third Exemestane 25 mg 1x/day p.o.97.9%Type I15 nM
Anastrozole 1 mg 1x/day p.o.
10 mg 1x/day p.o.
96.7–97.3%
98.1%
Type II10 nM
Letrozole 0.5 mg 1x/day p.o.
2.5 mg 1x/day p.o.
98.4%
98.9%–>99.1%
Type II2.5 nM
Footnotes:a = In postmenopausal women. b = Type I: Steroidal, irreversible (substrate-binding site). Type II: Nonsteroidal, reversible (binding to and interference with the cytochrome P450 heme moiety). c = In breast cancer homogenates. Sources: See template.

Related Research Articles

<span class="mw-page-title-main">Anastrozole</span> Chemical compound

Anastrozole, sold under the brand name Arimidex among others, is a medication used in addition to other treatments for breast cancer. Specifically it is used for hormone receptor-positive breast cancer. It has also been used to prevent breast cancer in those at high risk. It is taken by mouth.

<span class="mw-page-title-main">Aromatase inhibitor</span> Class of drugs

Aromatase inhibitors (AIs) are a class of drugs used in the treatment of breast cancer in postmenopausal women and in men, and gynecomastia in men. They may also be used off-label to reduce estrogen conversion when supplementing testosterone exogenously. They may also be used for chemoprevention in women at high risk for breast cancer.

<span class="mw-page-title-main">Letrozole</span> Breast cancer drug

Letrozole, sold under the brand name Femara among others, is an aromatase inhibitor medication that is used in the treatment of breast cancer.

<span class="mw-page-title-main">Aminoglutethimide</span> Group of stereoisomers

Aminoglutethimide (AG), sold under the brand names Elipten, Cytadren, and Orimeten among others, is a medication which has been used in the treatment of seizures, Cushing's syndrome, breast cancer, and prostate cancer, among other indications. It has also been used by bodybuilders, athletes, and other men for muscle-building and performance- and physique-enhancing purposes. AG is taken by mouth three or four times per day.

The Letts nitrile synthesis is a chemical reaction of aromatic carboxylic acids with metal thiocyanates to form nitriles. The reaction includes the loss of carbon dioxide and potassium hydrosulfide. The polar basic substitution reaction was discovered in 1872 by Edmund A. Letts.

<span class="mw-page-title-main">Lasofoxifene</span> Chemical compound

Lasofoxifene, sold under the brand name Fablyn, is a nonsteroidal selective estrogen receptor modulator (SERM) which is marketed by Pfizer in Lithuania and Portugal for the prevention and treatment of osteoporosis and for the treatment of vaginal atrophy, and the result of an exclusive research collaboration with Ligand Pharmaceuticals (LGND). It also appears to have had a statistically significant effect of reducing breast cancer in women according to a study published in The Journal of the National Cancer Institute.

Antiestrogens, also known as estrogen antagonists or estrogen blockers, are a class of drugs which prevent estrogens like estradiol from mediating their biological effects in the body. They act by blocking the estrogen receptor (ER) and/or inhibiting or suppressing estrogen production. Antiestrogens are one of three types of sex hormone antagonists, the others being antiandrogens and antiprogestogens. Antiestrogens are commonly used to stop steroid hormones, estrogen, from binding to the estrogen receptors leading to the decrease of estrogen levels. Decreased levels of estrogen can lead to complications in sexual development. Antiandrogens are sex hormone antagonists which are able to lower the production and the effects that testosterone can have on female bodies.

A hormone-receptor-positive (HR+) tumor is a tumor which consists of cells that express receptors for certain hormones. The term most commonly refers to estrogen receptor positive tumors, but can also include progesterone receptor positive tumors. Estrogen-receptor-positive tumors depend on the presence of estrogen for ongoing proliferation.

<span class="mw-page-title-main">Rogletimide</span> Chemical compound

Rogletimide, also known as pyridoglutethimide, is a medication which was never marketed. It is related in chemical structure to the sedative/hypnotic drug glutethimide, but instead has pharmacological activity as a selective aromatase inhibitor similar to the related drug aminoglutethimide and has no significant sedative-hypnotic effect. This makes it potentially useful in the treatment of breast cancer, and with fewer side effects than aminoglutethimide, but its lower potency caused it to be unsuccessful in clinical trials.

<span class="mw-page-title-main">27-Hydroxycholesterol</span> Chemical compound

27-Hydroxycholesterol (27-HC) is an endogenous oxysterol with multiple biological functions, including activity as a selective estrogen receptor modulator (SERM) and as an agonist of the liver X receptor (LXR). It is a metabolite of cholesterol that is produced by the enzyme CYP27A1.

<span class="mw-page-title-main">Nonsteroidal antiandrogen</span>

A nonsteroidal antiandrogen (NSAA) is an antiandrogen with a nonsteroidal chemical structure. They are typically selective and full or silent antagonists of the androgen receptor (AR) and act by directly blocking the effects of androgens like testosterone and dihydrotestosterone (DHT). NSAAs are used in the treatment of androgen-dependent conditions in men and women. They are the converse of steroidal antiandrogens (SAAs), which are antiandrogens that are steroids and are structurally related to testosterone.

<span class="mw-page-title-main">Seviteronel</span> Chemical compound

Seviteronel is an experimental cancer medication which is under development by Viamet Pharmaceuticals and Innocrin Pharmaceuticals for the treatment of prostate cancer and breast cancer. It is a nonsteroidal CYP17A1 inhibitor and works by inhibiting the production of androgens and estrogens in the body. As of July 2017, seviteronel is in phase II clinical trials for both prostate cancer and breast cancer. In January 2016, it was designated fast-track status by the United States Food and Drug Administration for prostate cancer. In April 2017, seviteronel received fast-track designation for breast cancer as well.

Steroidal aromatase inhibitors are a class of drugs that are mostly used for treating breast cancer in postmenopausal women. High levels of estrogen in breast tissue increases the risk of developing breast cancer and the enzyme aromatase is considered to be a good therapeutic target when treating breast cancer due to it being involved in the final step of estrogen biosynthetic pathway and also its inhibition will not affect production of other steroids. Aromatase Inhibitors are classified into two categories based on their structure, nonsteroidal and steroidal; the latter resemble the structure of androstenedione. Steroidal aromatase inhibitors irreversibly inhibit the enzyme by binding covalently to the binding site of aromatase so the substrate cannot access it.

<span class="mw-page-title-main">Triphenylethylene</span> Chemical compound

Triphenylethylene (TPE) is a simple aromatic hydrocarbon that possesses weak estrogenic activity. Its estrogenic effects were discovered in 1937. TPE was derived from structural modification of the more potent estrogen diethylstilbestrol, which is a member of the stilbestrol group of nonsteroidal estrogens.

<span class="mw-page-title-main">Abemaciclib</span> Anti-breast cancer medication

Abemaciclib, sold under the brand name Verzenio among others, is a medication for the treatment of advanced or metastatic breast cancers. It was developed by Eli Lilly and it acts as a CDK inhibitor selective for CDK4 and CDK6.

<span class="mw-page-title-main">Etacstil</span> Chemical compound

Etacstil is an orally active, nonsteroidal, combined selective estrogen receptor modulator (SERM) and selective estrogen receptor degrader (SERD) that was developed for the treatment of estrogen receptor-positive breast cancer. It was shown to overcome antiestrogen resistance in breast cancer by altering the shape of the estrogen receptor, thus exhibiting SERD properties. Etacstil is a tamoxifen derivative and one of the first drugs to overcome tamoxifen-resistance. It is the predecessor of GW-7604, of which etacstil is a prodrug. This is analogous to the case of tamoxifen being a prodrug of afimoxifene (4-hydroxytamoxifen).

<span class="mw-page-title-main">Endoxifen</span> Chemical compound

Endoxifen, also known as 4-hydroxy-N-desmethyltamoxifen, is a nonsteroidal selective estrogen receptor modulator (SERM) of the triphenylethylene group as well as a protein kinase C (PKC) inhibitor. It is under development for the treatment of estrogen receptor-positive breast cancer and for the treatment of mania in bipolar disorder. It is taken by mouth.

<span class="mw-page-title-main">Norendoxifen</span> Chemical compound

Norendoxifen, also known as 4-hydroxy-N,N-didesmethyltamoxifen, is a nonsteroidal aromatase inhibitor (AI) of the triphenylethylene group that was never marketed. It is an active metabolite of the selective estrogen receptor modulator (SERM) tamoxifen. Unlike tamoxifen, norendoxifen is not a SERM, and instead has been found to act as a potent and selective competitive inhibitor of aromatase (Ki = 35 nM). Drugs with dual SERM and AI activity, such as 4'-hydroxynorendoxifen, have been developed from norendoxifen, and may have therapeutic potential as antiestrogens in the treatment of estrogen receptor-positive breast cancer.

<span class="mw-page-title-main">4'-Hydroxynorendoxifen</span> Chemical compound

4'-Hydroxynorendoxifen is a synthetic, nonsteroidal antiestrogen of the triphenylethylene group. It is a dual selective estrogen receptor modulator (SERM) and aromatase inhibitor (AI), and was derived from tamoxifen, a SERM, and norendoxifen, a metabolite of tamoxifen that has been found to act as an AI. The drug has been suggested for potential development as a treatment for estrogen receptor (ER)-positive breast cancer. It was synthesized in 2015.

<span class="mw-page-title-main">Non steroidal aromatase inhibitors</span>

Non-Steroidal Aromatase Inhibitors (NSAIs) are one of two categories of aromatase inhibitors (AIs). AIs are divided into two categories, steroidal aromatase inhibitors and non-steroidal aromatase inhibitors that is based on their mechanism of action and structure. NSAIs are mainly used to treat breast cancer in women. NSAIs binding is a reversible process where NSAIs binds to the aromatase enzyme through non-covalent interactions. When aromatase inhibitors (AIs) are used to treat breast cancer the main target is the aromatase enzyme which is responsible for the high estrogen level.

References

  1. Browne LJ, Gude C, Rodriguez H, Steele RE, Bhatnager A (February 1991). "Fadrozole hydrochloride: a potent, selective, nonsteroidal inhibitor of aromatase for the treatment of estrogen-dependent disease". J. Med. Chem. 34 (2): 725–36. doi:10.1021/jm00106a038. PMID   1825337.
  2. Raats JI, Falkson G, Falkson HC (January 1992). "A study of fadrozole, a new aromatase inhibitor, in postmenopausal women with advanced metastatic breast cancer". J. Clin. Oncol. 10 (1): 111–6. doi:10.1200/jco.1992.10.1.111. PMID   1530798.[ permanent dead link ]