Fosfestrol

Last updated
Fosfestrol
Fosfestrol.svg
Clinical data
Trade names Honvan, others
Other namesDiethylstilbestrol diphosphate; Stilbestrol diphosphate; DESDP; DESP; DES-DP; DES-P
AHFS/Drugs.com International Drug Names
Routes of
administration
Intravenous, by mouth
Drug class Nonsteroidal estrogen; Estrogen ester
ATC code
Legal status
Legal status
  • In general: ℞ (Prescription only)
Identifiers
  • [4-[4-(4-phosphonooxyphenyl)hex-3-en-3-yl]phenoxy]phosphonic acid
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.007.573 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C18H22O8P2
Molar mass 428.314 g·mol−1
3D model (JSmol)
  • O=P(Oc1ccc(cc1)\C(=C(\c2ccc(OP(=O)(O)O)cc2)CC)CC)(O)O
  • InChI=1S/C18H22O8P2/c1-3-17(13-5-9-15(10-6-13)25-27(19,20)21)18(4-2)14-7-11-16(12-8-14)26-28(22,23)24/h5-12H,3-4H2,1-2H3,(H2,19,20,21)(H2,22,23,24)/b18-17+ Yes check.svgY
  • Key:NLORYLAYLIXTID-ISLYRVAYSA-N Yes check.svgY
   (verify)

Fosfestrol, sold under the brand name Honvan and also known as diethylstilbestrol diphosphate (DESDP), is an estrogen medication which is used in the treatment of prostate cancer in men. [1] [2] [3] It is given by slow intravenous infusion once per day to once per week or by mouth once per day. [3] [2]

Contents

Side effects of fosfestrol include nausea and vomiting, cardiovascular complications, blood clots, edema, and genital skin reactions, among others. [2] Fosfestrol is an estrogen, and hence is an agonist of the estrogen receptor, the biological target of estrogens like estradiol. [2] [1] [4] It acts as a prodrug of diethylstilbestrol. [2] [1] [5]

Fosfestrol was patented in 1941 and was introduced for medical use in 1955. [6] It was previously marketed widely throughout the world, but now remains available in only a few countries. [7] [8] [6] [3]

Medical uses

Fosfestrol is used as a form of high-dose estrogen therapy in the treatment of castration-resistant prostate cancer. [2] It is added once progression of metastases has occurred following therapy with other interventions such orchiectomy, gonadotropin-releasing hormone modulators, and nonsteroidal antiandrogens. [2] Fosfestrol has also been used to prevent the testosterone flare at the start of gonadotropin-releasing hormone agonist therapy in men with prostate cancer. [9]

Fosfestrol sodium is given at a dosage of 600 to 1200 mg/day by slow intravenous infusion over a period of 1 hour for a treatment duration of 5 to 10 days in men with prostate cancer. [3] [2] Following this, it is given at a dose of 300 mg/day for 10 to 20 days. [3] Maintenance doses of fosfestrol sodium of 300 to 600 mg may be given four times per week. [3] This may be gradually reduced to one 300 to 600-mg dose per week over a period of several months. [3]

Fosfestrol sodium is also used to a lesser extent by oral administration initially at a dosage of 360 to 480 mg three times per day in the treatment of prostate cancer. [3] [2] Maintenance doses of 120 to 240 mg three times per day may be used and can be gradually reduced to 240 mg/day. [3] [2]

Estrogen dosages for prostate cancer
Route/formEstrogenDosage
Oral Estradiol 1–2 mg 3x/day
Conjugated estrogens 1.25–2.5 mg 3x/day
Ethinylestradiol 0.15–3 mg/day
Ethinylestradiol sulfonate 1–2 mg 1x/week
Diethylstilbestrol 1–3 mg/day
Dienestrol 5 mg/day
Hexestrol 5 mg/day
Fosfestrol100–480 mg 1–3x/day
Chlorotrianisene 12–48 mg/day
Quadrosilan 900 mg/day
Estramustine phosphate 140–1400 mg/day
Transdermal patch Estradiol 2–6x 100 μg/day
Scrotal: 1x 100 μg/day
IM Tooltip Intramuscular or SC injection Estradiol benzoate 1.66 mg 3x/week
Estradiol dipropionate 5 mg 1x/week
Estradiol valerate 10–40 mg 1x/1–2 weeks
Estradiol undecylate 100 mg 1x/4 weeks
Polyestradiol phosphate Alone: 160–320 mg 1x/4 weeks
With oral EE: 40–80 mg 1x/4 weeks
Estrone 2–4 mg 2–3x/week
IV injection Fosfestrol300–1200 mg 1–7x/week
Estramustine phosphate 240–450 mg/day
Note: Dosages are not necessarily equivalent. Sources: See template.

Available forms

Fosfestrol is available in the form of solutions for intravenous administration and tablets for oral administration. [10]

Side effects

Side effects of fosfestrol include nausea and vomiting in 80% of patients (with 1 in 25 cases, or 4%, resulting in death), cardiovascular complications (18% with fosfestrol plus adriamycin relative to 2% with adriamycin alone) such as thrombosis (2 in 25 cases, or 8%), edema (44% requiring diuretic therapy), and skin reactions such as burning, itching, or pain in the genital area (40%). [2] [1] In addition, weight gain, feminization, and gynecomastia may occur. [1]

Pharmacology

Pharmacodynamics

Testosterone levels with no treatment and with various estrogens in men with prostate cancer. Determinations were made with an early radioimmunoassay (RIA). Source was Shearer et al. (1973). Testosterone levels with different estrogen therapies in men with prostate cancer.png
Testosterone levels with no treatment and with various estrogens in men with prostate cancer. Determinations were made with an early radioimmunoassay (RIA). Source was Shearer et al. (1973).

Fosfestrol is an estrogen, or an agonist of the estrogen receptors. [2] [1] [4] It is inactive itself and acts as a prodrug of diethylstilbestrol. [2] [1] [5] Similarly to diethylstilbestrol, fosfestrol has powerful antigonadotropic effects and strongly suppresses testosterone levels in men. [2] [1] [12] [13] It decreases testosterone levels into the castrate range within 12 hours of the initiation of therapy. [1] Fosfestrol may also act by other mechanisms, such as via direct cytotoxic effects in the prostate gland. [2] [1]

Pharmacokinetics

The pharmacokinetics of fosfestrol have been studied. [2] [14] [1]

Chemistry

Fosfestrol is a synthetic nonsteroidal estrogen of the stilbestrol group. [15] [3] It is an estrogen ester; specifically, it is the diphosphate ester of diethylstilbestrol. [15] [3]

Fosfestrol is provided both as the free base and as a tetrasodium salt. [2] [3] In terms of dose equivalence, 300 mg anhydrous fosfestrol sodium is equal to about 250 mg fosfestrol. [3]

A polymer of fosfestrol, polydiethylstilbestrol phosphate, was developed as a long-acting estrogen for potential use in veterinary medicine, but was never marketed. [16] [17] [18] [19] [20] [21]

History

Fosfestrol was first patented in 1941 and was mentioned in the literature by Huggins. [6] [22] Conjugated estrogens and diethylstilbestrol sulfate, which are water-soluble estrogens, were first reported to be effective in the treatment of prostate cancer via intravenous administration in 1952. [23] [22] Starting in October 1952, Flocks and colleagues studied intravenous fosfestrol in the treatment of prostate cancer, publishing their findings in 1955. [22] Fosfestrol was first introduced for medical use in 1955 under the brand names Stilphostrol and ST 52 in the United States and France, respectively. [6]

Society and culture

Generic names

Fosfestrol is the generic name of the drug and its INN Tooltip International Nonproprietary Name, BAN Tooltip British Approved Name, and JAN Tooltip Japanese Accepted Name, while diethylstilbestrol diphosphate is its USAN Tooltip United States Adopted Name and fosfestrolo is its DCIT Tooltip Denominazione Comune Italiana. [15] [7] [8] [3] It is also known as stilbestrol diphosphate. [15] [7] [8] Fosfestrol sodium is its INNM Tooltip International Nonproprietary Name and BANM Tooltip British Approved Name. [15] [7] [8] [3]

Brand names

Brand names of fosfestrol include Cytonal, Difostilben, Honovan, Honvan, Honvol, Honvon, Fosfostilben, Fostrolin, ST 52, Stilbetin, Stilbol, Stilbostatin, Stilphostrol, and Vagestrol, among others. [15] [7] [8] [6]

Availability

Fosfestrol has been marketed widely throughout the world, including in the United States, Canada, Europe, Asia, Latin America, and South Africa, among other areas of the world. [7] [8] [3] [6] However, today, it appears to remain available only in a few countries, including Bangladesh, Egypt, India, Oman, and Tunisia. [8] [3]

See also

Related Research Articles

<span class="mw-page-title-main">Antiandrogen</span> Class of pharmaceutical drugs

Antiandrogens, also known as androgen antagonists or testosterone blockers, are a class of drugs that prevent androgens like testosterone and dihydrotestosterone (DHT) from mediating their biological effects in the body. They act by blocking the androgen receptor (AR) and/or inhibiting or suppressing androgen production. They can be thought of as the functional opposites of AR agonists, for instance androgens and anabolic steroids (AAS) like testosterone, DHT, and nandrolone and selective androgen receptor modulators (SARMs) like enobosarm. Antiandrogens are one of three types of sex hormone antagonists, the others being antiestrogens and antiprogestogens.

<span class="mw-page-title-main">Diethylstilbestrol</span> Chemical compound

Diethylstilbestrol (DES), also known as stilbestrol or stilboestrol, is a nonsteroidal estrogen medication, which is presently rarely used. In the past, it was widely used for a variety of indications, including pregnancy support for those with a history of recurrent miscarriage, hormone therapy for menopausal symptoms and estrogen deficiency, treatment of prostate cancer and breast cancer, and other uses. By 2007, it was only used in the treatment of prostate cancer and breast cancer. In 2011, Hoover and colleagues reported on adverse health outcomes linked to DES including infertility, miscarriage, ectopic pregnancy, preeclampsia, preterm birth, stillbirth, infant death, menopause prior to age 45, breast cancer, cervical cancer, and vaginal cancer. While most commonly taken by mouth, DES was available for use by other routes as well, for instance, vaginal, topical, and by injection.

<span class="mw-page-title-main">Ethinylestradiol</span> Estrogen medication

Ethinylestradiol (EE) is an estrogen medication which is used widely in birth control pills in combination with progestins. In the past, EE was widely used for various indications such as the treatment of menopausal symptoms, gynecological disorders, and certain hormone-sensitive cancers. It is usually taken by mouth but is also used as a patch and vaginal ring.

<span class="mw-page-title-main">Polyestradiol phosphate</span> Chemical compound

Polyestradiol phosphate (PEP), sold under the brand name Estradurin, is an estrogen medication which is used primarily in the treatment of prostate cancer in men. It is also used in women to treat breast cancer, as a component of hormone therapy to treat low estrogen levels and menopausal symptoms, and as a component of feminizing hormone therapy for transgender women. It is given by injection into muscle once every four weeks.

<span class="mw-page-title-main">Gonadotropin-releasing hormone agonist</span> Drug class affecting sex hormones

A gonadotropin-releasing hormone agonist is a type of medication which affects gonadotropins and sex hormones. They are used for a variety of indications including in fertility medicine and to lower sex hormone levels in the treatment of hormone-sensitive cancers such as prostate cancer and breast cancer, certain gynecological disorders like heavy periods and endometriosis, high testosterone levels in women, early puberty in children, as a part of transgender hormone therapy, and to delay puberty in transgender youth among other uses. It is also used in the suppression of spontaneous ovulation as part of controlled ovarian hyperstimulation, an essential component in IVF. GnRH agonists are given by injections into fat, as implants placed into fat, and as nasal sprays.

<span class="mw-page-title-main">Estramustine phosphate</span> Chemical compound

Estramustine phosphate (EMP), also known as estradiol normustine phosphate and sold under the brand names Emcyt and Estracyt, is a dual estrogen and chemotherapy medication which is used in the treatment of prostate cancer in men. It is taken multiple times a day by mouth or by injection into a vein.

<span class="mw-page-title-main">Chlorotrianisene</span> Chemical compound

Chlorotrianisene (CTA), also known as tri-p-anisylchloroethylene (TACE) and sold under the brand name Tace among others, is a nonsteroidal estrogen related to diethylstilbestrol (DES) which was previously used in the treatment of menopausal symptoms and estrogen deficiency in women and prostate cancer in men, among other indications, but has since been discontinued and is now no longer available. It is taken by mouth.

<span class="mw-page-title-main">Estriol succinate</span> Chemical compound

Estriol succinate, sold under the brand name Synapause among others, is an estrogen medication which is used in the treatment of menopausal symptoms. It is taken by mouth, in through the vagina, and by injection.

<span class="mw-page-title-main">Estradiol undecylate</span> Chemical compound

Estradiol undecylate, also known as estradiol undecanoate and formerly sold under the brand names Delestrec and Progynon Depot 100 among others, is an estrogen medication which has been used in the treatment of prostate cancer in men. It has also been used as a part of hormone therapy for transgender women. Although estradiol undecylate has been used in the past, it was discontinued and hence is no longer available. The medication has been given by injection into muscle usually once a month.

<span class="mw-page-title-main">Cyproterone acetate</span> Chemical compound

Cyproterone acetate (CPA), sold alone under the brand name Androcur or with ethinylestradiol under the brand names Diane or Diane-35 among others, is an antiandrogen and progestin medication used in the treatment of androgen-dependent conditions such as acne, excessive body hair growth, early puberty, and prostate cancer, as a component of feminizing hormone therapy for transgender women, and in birth control pills. It is formulated and used both alone and in combination with an estrogen. CPA is taken by mouth one to three times per day.

<span class="mw-page-title-main">Conjugated estrogens</span> Estrogen medication

Conjugated estrogens (CEs), or conjugated equine estrogens (CEEs), sold under the brand name Premarin among others, is an estrogen medication which is used in menopausal hormone therapy and for various other indications. It is a mixture of the sodium salts of estrogen conjugates found in horses, such as estrone sulfate and equilin sulfate. CEEs are available in the form of both natural preparations manufactured from the urine of pregnant mares and fully synthetic replications of the natural preparations. They are formulated both alone and in combination with progestins such as medroxyprogesterone acetate. CEEs are usually taken by mouth, but can also be given by application to the skin or vagina as a cream or by injection into a blood vessel or muscle.

<span class="mw-page-title-main">Hexestrol</span> Chemical compound

Hexestrol, sold under the brand name Synestrol among others, is a nonsteroidal estrogen which was previously used for estrogen replacement therapy and in the treatment of certain hormone-dependent cancers as well as gynecological disorders but is mostly no longer marketed. It has also been used in the form of esters such as hexestrol diacetate and hexestrol dipropionate. Hexestrol and its esters are taken by mouth, held under the tongue, or via injection into muscle.

<span class="mw-page-title-main">Ethinylestradiol sulfonate</span> Estrogenic drug

Ethinylestradiol sulfonate (EES), sold under the brand names Deposiston and Turisteron among others, is an estrogen medication which has been used in birth control pills for women and in the treatment of prostate cancer in men. It has also been investigated in the treatment of breast cancer in women. The medication was combined with norethisterone acetate in birth control pills. EES is taken by mouth once per week.

<span class="mw-page-title-main">GTx-758</span> Chemical compound

GTx-758 is a synthetic nonsteroidal estrogen which was under development by GTx, Inc. for the treatment of advanced prostate cancer. As of 2016, it had completed two phase II clinical trials.

<span class="mw-page-title-main">Estradiol (medication)</span> Steroidal hormone medication

Estradiol (E2) is a medication and naturally occurring steroid hormone. It is an estrogen and is used mainly in menopausal hormone therapy and to treat low sex hormone levels in women. It is also used in hormonal birth control for women, in feminizing hormone therapy for transgender women, and in the treatment of hormone-sensitive cancers like prostate cancer in men and breast cancer in women, among other uses. Estradiol can be taken by mouth, held and dissolved under the tongue, as a gel or patch that is applied to the skin, in through the vagina, by injection into muscle or fat, or through the use of an implant that is placed into fat, among other routes.

<span class="mw-page-title-main">High-dose estrogen therapy</span> Type of hormone therapy

High-dose estrogen therapy (HDE) is a type of hormone therapy in which high doses of estrogens are given. When given in combination with a high dose of progestogen, it has been referred to as pseudopregnancy. It is called this because the estrogen and progestogen levels achieved are in the range of the very high levels of these hormones that occur during pregnancy. HDE and pseudopregnancy have been used in medicine for a number of hormone-dependent indications, such as breast cancer, prostate cancer, and endometriosis, among others. Both natural or bioidentical estrogens and synthetic estrogens have been used and both oral and parenteral routes may be used.

<span class="mw-page-title-main">Estrogen (medication)</span> Type of medication

An estrogen (E) is a type of medication which is used most commonly in hormonal birth control and menopausal hormone therapy, and as part of feminizing hormone therapy for transgender women. They can also be used in the treatment of hormone-sensitive cancers like breast cancer and prostate cancer and for various other indications. Estrogens are used alone or in combination with progestogens. They are available in a wide variety of formulations and for use by many different routes of administration. Examples of estrogens include bioidentical estradiol, natural conjugated estrogens, synthetic steroidal estrogens like ethinylestradiol, and synthetic nonsteroidal estrogens like diethylstilbestrol. Estrogens are one of three types of sex hormone agonists, the others being androgens/anabolic steroids like testosterone and progestogens like progesterone.

<span class="mw-page-title-main">Pharmacology of bicalutamide</span>

The pharmacology of bicalutamide is the study of the pharmacodynamic and pharmacokinetic properties of the nonsteroidal antiandrogen (NSAA) bicalutamide. In terms of pharmacodynamics, bicalutamide acts as a selective antagonist of the androgen receptor (AR), the biological target of androgens like testosterone and dihydrotestosterone (DHT). It has no capacity to activate the AR. It does not decrease androgen levels and has no other important hormonal activity. The medication has progonadotropic effects due to its AR antagonist activity and can increase androgen, estrogen, and neurosteroid production and levels. This results in a variety of differences of bicalutamide monotherapy compared to surgical and medical castration, such as indirect estrogenic effects and associated benefits like preservation of sexual function and drawbacks like gynecomastia. Bicalutamide can paradoxically stimulate late-stage prostate cancer due to accumulated mutations in the cancer. When used as a monotherapy, bicalutamide can induce breast development in males due to its estrogenic effects. Unlike other kinds of antiandrogens, it may have less adverse effect on the testes and fertility.

The pharmacology of estradiol, an estrogen medication and naturally occurring steroid hormone, concerns its pharmacodynamics, pharmacokinetics, and various routes of administration.

<span class="mw-page-title-main">Pharmacokinetics of estradiol</span>

The pharmacology of estradiol, an estrogen medication and naturally occurring steroid hormone, concerns its pharmacodynamics, pharmacokinetics, and various routes of administration.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 Droz JP, Kattan J, Bonnay M, Chraibi Y, Bekradda M, Culine S (February 1993). "High-dose continuous-infusion fosfestrol in hormone-resistant prostate cancer". Cancer. 71 (3 Suppl): 1123–1130. doi: 10.1002/1097-0142(19930201)71:3+<1123::AID-CNCR2820711434>3.0.CO;2-T . PMID   8428334. S2CID   23078614.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 von Bruchhausen F, Dannhardt G, Ebel S, Frahm AW, Hackenthal E, Holzgrabe U (2 July 2013). Hagers Handbuch der Pharmazeutischen Praxis: Band 8: Stoffe E-O. Springer-Verlag. pp. 301–. ISBN   978-3-642-57994-3.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Sweetman SC, ed. (2009). "Sex hormones and their modulators". Martindale: The Complete Drug Reference (36th ed.). London: Pharmaceutical Press. pp. 2104–2105. ISBN   978-0-85369-840-1.
  4. 1 2 Oettel M (1999). "Estrogens and Antiestrogens in the Male". In Oettel M, Schillinger E (eds.). Estrogens and Antiestrogens II: Pharmacology and Clinical Application of Estrogens and Antiestrogen. Handbook of Experimental Pharmacology. Vol. 135 / 2. Springer Science & Business Media. pp. 505–571. doi:10.1007/978-3-642-60107-1_25. ISBN   978-3-642-60107-1. ISSN   0171-2004.
  5. 1 2 Urotext (1 January 2001). Urotext-Luts: Urology. Urotext. pp. 386–. ISBN   978-1-903737-03-3.
  6. 1 2 3 4 5 6 William Andrew Publishing (22 October 2013). Pharmaceutical Manufacturing Encyclopedia. Elsevier. pp. 1292–. ISBN   978-0-8155-1856-3.
  7. 1 2 3 4 5 6 Index Nominum 2000: International Drug Directory. Taylor & Francis. January 2000. pp. 332–. ISBN   978-3-88763-075-1.
  8. 1 2 3 4 5 6 7 "Fosfestrol - Drugs.com". Archived from the original on 2019-03-29. Retrieved 2019-03-29.
  9. Kotake T, Usami M, Akaza H, Koiso K, Homma Y, Kawabe K, et al. (November 1999). "Goserelin acetate with or without antiandrogen or estrogen in the treatment of patients with advanced prostate cancer: a multicenter, randomized, controlled trial in Japan. Zoladex Study Group". Japanese Journal of Clinical Oncology. 29 (11): 562–570. doi: 10.1093/jjco/29.11.562 . PMID   10678560.
  10. Fernandez M, Calix L (8 February 2006). Modell's Drugs in Current Use and New Drugs, 2006: 52nd Edition. Springer Publishing Company. pp. 206–. ISBN   978-0-8261-7097-2.
  11. 1 2 3 Shearer RJ, Hendry WF, Sommerville IF, Fergusson JD (December 1973). "Plasma testosterone: an accurate monitor of hormone treatment in prostatic cancer". British Journal of Urology. 45 (6): 668–677. doi:10.1111/j.1464-410x.1973.tb12238.x. PMID   4359746.
  12. Kitahara S, Umeda H, Yano M, Koga F, Sumi S, Moriguchi H, et al. (October 1999). "Effects of intravenous administration of high dose-diethylstilbestrol diphosphate on serum hormonal levels in patients with hormone-refractory prostate cancer". Endocrine Journal. 46 (5): 659–664. doi: 10.1507/endocrj.46.659 . PMID   10670751.
  13. Tunn UW, Senge T, Neumann F (1981). "Effekt von Diäthylstilböstroldiphosphat auf die Serumkonzentration von Testosteron und Luteinisierungshormon beim M1-Prostatakarzinom". Verhandlungsbericht der Deutschen Gesellschaft für Urologie. Vol. 32. pp. 447–449. doi:10.1007/978-3-642-81706-9_133. ISBN   978-3-540-11017-0. ISSN   0070-413X.
  14. Oelschläger H, Rothley D, Dunzendorfer U (1988). "New Results on the Pharmacokinetics of Fosfestrol". Urologia Internationalis. 43 (1): 15–23. doi:10.1159/000281427. ISSN   1423-0399.
  15. 1 2 3 4 5 6 Elks J (14 November 2014). The Dictionary of Drugs: Chemical Data: Chemical Data, Structures and Bibliographies. Springer. pp. 396–. ISBN   978-1-4757-2085-3.
  16. Diczfalusy E, Fernö H, Fex B, Högberg B, Kneip P (1959). "High Molecular Weight Enzyme Inhibitors. IV. Polymeric Phosphates of Synthetic Estrogens" (PDF). Acta Chem. Scand. 13 (5): 1011–1018. doi: 10.3891/acta.chem.scand.13-1011 .
  17. Bengtsson G, Ullberg S, Perklev T (August 1963). "Autoradiographic Distribution Studies after Administration of a Macromolecular Synthetic Oestrogen (14C-Polydiethylstilboestrol Phosphate)". Acta Endocrinologica. 43 (4): 571–580. doi:10.1530/acta.0.0430571. PMID   14059878.
  18. Perklev T (November 1964). "Distribution and Excretion of Radioactivity after Parenteral Administration of Radioactive Polydiethylstilbestrol Phosphate to Rats and a Cow". Proceedings of the Society for Experimental Biology and Medicine. 117 (2): 394–398. doi:10.3181/00379727-117-29590. PMID   14233451. S2CID   28242978.
  19. Perklev T, Gassner FX, Martin RP, Huseby RA, Shimoda W (1965). "Excretion of radioactivity by human subjects after ingestion of liver from cattle treated with labeled polydiethylstilbestrol phosphate". Proceedings of the Society for Experimental Biology and Medicine. 119 (4): 996–998. doi:10.3181/00379727-119-30359. PMID   5891085. S2CID   43341013.
  20. Perklev T, Gassner FX, Hopwood ML (September 1967). "Distribution and excretion of 14C-labeled polydiethylstilbestrol phosphate in a steer". Journal of Animal Science. 26 (5): 1094–1100. doi:10.2527/jas1967.2651094x. PMID   6077168.
  21. Loew FM (October 1972). "The veterinarian and intensive livestock production: humane considerations". The Canadian Veterinary Journal. 13 (10): 229–233. PMC   1695928 . PMID   4562986.
  22. 1 2 3 Flocks RH, Marberger H, Begley BJ, Prendergast LJ (October 1955). "Prostatic carcinoma: treatment of advanced cases with intravenous diethylstilbestrol diphosphate". The Journal of Urology. 74 (4): 549–551. doi:10.1016/S0022-5347(17)67313-0. PMID   13264317.
  23. Resnick MI, Thompson IM (2000). Advanced Therapy of Prostate Disease. PMPH-USA. pp. 381–. ISBN   978-1-55009-102-1.

Further reading