Methoxychlor

Last updated
Methoxychlor
Methoxychlor chemical structure.png
Methoxychlor molecule spacefill.png
Names
Preferred IUPAC name
1,1′-(2,2,2-Trichloroethane-1,1-diyl)bis(4-methoxybenzene)
Other names
Methoxcide
Dimethoxy-DDT
Methoxy-DDT
p,p'-Dimethoxydiphenyltrichloroethane
Identifiers
3D model (JSmol)
AbbreviationsDMDT
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.000.709 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C16H15Cl3O2/c1-20-13-7-3-11(4-8-13)15(16(17,18)19)12-5-9-14(21-2)10-6-12/h3-10,15H,1-2H3 Yes check.svgY
    Key: IAKOZHOLGAGEJT-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C16H15Cl3O2/c1-20-13-7-3-11(4-8-13)15(16(17,18)19)12-5-9-14(21-2)10-6-12/h3-10,15H,1-2H3
    Key: IAKOZHOLGAGEJT-UHFFFAOYAO
  • ClC(Cl)(Cl)C(c1ccc(OC)cc1)c2ccc(OC)cc2
Properties
C16H15Cl3O2
Molar mass 345.65 g/mol
AppearanceColorless to light-yellow crystals
Odor Slight, fruity odor
Density 1.41 g/cm3 (20°C) [1]
Melting point 87 °C (189 °F; 360 K)
Boiling point decomposes
0.00001% (20°C) [1]
Hazards
Lethal dose or concentration (LD, LC):
5000 mg/kg (oral, rat)
1000 mg/kg (oral, mouse)
>6000 mg/kg (oral, rabbit) [2]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 15 mg/m3 [1]
REL (Recommended)
Ca [1]
IDLH (Immediate danger)
Ca [5000 mg/m3] [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Methoxychlor is a synthetic organochloride insecticide, now obsolete. Tradenames for methoxychlor include Chemform, Maralate, Methoxo, Methoxcide, Metox, and Moxie.

Contents

Usage

Methoxychlor was used to protect crops, ornamentals, livestock, and pets against fleas, mosquitoes, cockroaches, and other insects. It was intended to be a replacement for DDT, but has since been banned for use as a pesticide based on its acute toxicity, bioaccumulation, and endocrine disruption activity. [3]

The amount of methoxychlor in the environment changes seasonally due to its use in farming and foresting. It does not dissolve readily in water, so it is mixed with a petroleum-based fluid and sprayed, or used as a dust. Sprayed methoxychlor settles on the ground or in aquatic ecosystems, where it can be detected in sediments. [4] Its degradation may take many months. Methoxychlor is ingested and absorbed by living organisms, and it accumulates in the food chain. Some metabolites may have unwanted side effects.

Banned

The use of methoxychlor as a pesticide was banned in the United States in 2003 [5] and in the European Union in 2002. [6]

Health and Environmental Impacts

The EPA lists methoxychlor as "a persistent, bioaccumulative, and toxic (PBT) chemical by the EPA Toxics Release Inventory (TRI) program", [3] and as such it is a waste minimization priority chemical. The 2023 Conference of the Parties of the United Nations Stockholm Convention on Persistent Organic Pollutants took the decision to eliminate the use of methoxychlor, by listing this chemical in Annex A to the Convention. [7]

Human exposure

Human exposure to methoxychlor occurs via air, soil, and water, [8] primarily in people who work with the substance or who are exposed to air, soil, or water that has been contaminated. It is unknown how quickly and efficiently the substance is absorbed by humans who have been exposed to contaminated air or via skin contact. [8] In animal models, high doses can lead to neurotoxicity. [8] Some methoxychlor's metabolites have estrogenic effects in adult and developing animals before and after birth. [8] One studied metabolite is 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE) which shows reproductive toxicity in an animal model by reducing testosterone biosynthesis. [9] [10] Such effects adversely affect both the male and female reproductive systems. It is expected that this "could occur in humans" but has not been proven. [8] While one study has linked methoxychlor to the development of leukemia in humans, most studies in animals and humans have been negative, thus the EPA has determined that it is not classifiable as a carcinogen. The EPA indicates that levels above the Maximum Contaminant Level of 40 ppb "cause" central nervous depression, diarrhea, damage to liver, kidney, and heart, and - by chronic exposure - growth retardation. [3]

Little information is available regarding effects on human pregnancy and children, but it is assumed from animals studies that methoxychlor crosses the placenta, and it has been detected in human milk [8] Exposure to children may be different than in adults because they tend to play on the ground, further, their reproductive system may be more sensitive to the effects of methoxychlor as an endocrine disruptor.[ citation needed ]

Food contamination may occur at low levels and it is recommended to wash all foods. [8] A number of hazardous waste sites are known to contain methoxychlor.

Maximum pesticide residue limits for the EU/UK are set at 0.01 mg/kg for oranges and 0.01 mg/kg for apples.

See also

Related Research Articles

Chlordane, or chlordan, is an organochlorine compound that was used as a pesticide. It is a white solid. In the United States, chlordane was used for termite-treatment of approximately 30 million homes until it was banned in 1988. Chlordane was banned 10 years earlier for food crops like corn and citrus, and on lawns and domestic gardens.

<span class="mw-page-title-main">Chlordecone</span> Chemical compound

Chlordecone, better known in the United States under the brand name Kepone, is an organochlorine compound and a colourless solid. It is an obsolete insecticide, now prohibited in the western world, but only after many thousands of tonnes had been produced and used. Chlordecone is a known persistent organic pollutant (POP) that was banned globally by the Stockholm Convention on Persistent Organic Pollutants in 2009.

<span class="mw-page-title-main">Lindane</span> Organochlorine chemical and an isomer of hexachlorocyclohexane

Lindane, also known as gamma-hexachlorocyclohexane (γ-HCH), gammaxene, Gammallin and benzene hexachloride (BHC), is an organochlorine chemical and an isomer of hexachlorocyclohexane that has been used both as an agricultural insecticide and as a pharmaceutical treatment for lice and scabies.

<span class="mw-page-title-main">Carbofuran</span> Toxic carbamate pesticide

Carbofuran is a carbamate pesticide, widely used around the world to control insects on a wide variety of field crops, including potatoes, corn and soybeans. It is a systemic insecticide, which means that the plant absorbs it through the roots, and from there the plant distributes it throughout its organs where insecticidal concentrations are attained. Carbofuran also has contact activity against pests. It is one of the most toxic pesticides still in use.

<span class="mw-page-title-main">Dicofol</span> Chemical compound

Dicofol is an insecticide, an organochlorine that is chemically related to DDT. Dicofol is a miticide that is very effective against spider mite. Its production and use is banned internationally under the Stockholm Convention.

<span class="mw-page-title-main">Endocrine disruptor</span> Chemicals that can interfere with endocrine or hormonal systems

Endocrine disruptors, sometimes also referred to as hormonally active agents, endocrine disrupting chemicals, or endocrine disrupting compounds are chemicals that can interfere with endocrine systems. These disruptions can cause numerous adverse human health outcomes including, alterations in sperm quality and fertility, abnormalities in sex organs, endometriosis, early puberty, altered nervous system function, immune function, certain cancers, respiratory problems, metabolic issues, diabetes, obesity, cardiovascular problems, growth, neurological and learning disabilities, and more. Found in many household and industrial products, endocrine disruptors "interfere with the synthesis, secretion, transport, binding, action, or elimination of natural hormones in the body that are responsible for development, behavior, fertility, and maintenance of homeostasis ."

<span class="mw-page-title-main">Persistent organic pollutant</span> Organic compounds that are resistant to environmental degradation

Persistent organic pollutants (POPs) are organic compounds that are resistant to degradation through chemical, biological, and photolytic processes. They are toxic chemicals that adversely affect human health and the environment around the world. Because they can be transported by wind and water, most POPs generated in one country can and do affect people and wildlife far from where they are used and released.

<span class="mw-page-title-main">Atrazine</span> Herbicide

Atrazine is a chlorinated herbicide of the triazine class. It is used to prevent pre-emergence broadleaf weeds in crops such as maize (corn), soybean and sugarcane and on turf, such as golf courses and residential lawns. Atrazine's primary manufacturer is Syngenta and it is one of the most widely used herbicides in the United States, Canadian, and Australian agriculture. Its use was banned in the European Union in 2004, when the EU found groundwater levels exceeding the limits set by regulators, and Syngenta could not show that this could be prevented nor that these levels were safe.

<span class="mw-page-title-main">Dieldrin</span> Chemical compound

Dieldrin is an organochlorine compound originally produced in 1948 by J. Hyman & Co, Denver, as an insecticide. Dieldrin is closely related to aldrin, which reacts further to form dieldrin. Aldrin is not toxic to insects; it is oxidized in the insect to form dieldrin which is the active compound. Both dieldrin and aldrin are named after the Diels-Alder reaction which is used to form aldrin from a mixture of norbornadiene and hexachlorocyclopentadiene.

Xenoestrogens are a type of xenohormone that imitates estrogen. They can be either synthetic or natural chemical compounds. Synthetic xenoestrogens include some widely used industrial compounds, such as PCBs, BPA, and phthalates, which have estrogenic effects on a living organism even though they differ chemically from the estrogenic substances produced internally by the endocrine system of any organism. Natural xenoestrogens include phytoestrogens which are plant-derived xenoestrogens. Because the primary route of exposure to these compounds is by consumption of phytoestrogenic plants, they are sometimes called "dietary estrogens". Mycoestrogens, estrogenic substances from fungi, are another type of xenoestrogen that are also considered mycotoxins.

<span class="mw-page-title-main">Environmental hazard</span> Harmful substance, a condition or an event

An environmental hazard is a substance, state or event which has the potential to threaten the surrounding natural environment or adversely affect people's health, including pollution and natural disasters such as storms and earthquakes. It can include any single or combination of toxic chemical, biological, or physical agents in the environment, resulting from human activities or natural processes, that may impact the health of exposed subjects, including pollutants such as heavy metals, pesticides, biological contaminants, toxic waste, industrial and home chemicals.

<span class="mw-page-title-main">Vinclozolin</span> Fungicide used on fruits and vegetables

Vinclozolin is a common dicarboximide fungicide used to control diseases, such as blights, rots and molds in vineyards, and on fruits and vegetables such as raspberries, lettuce, kiwi, snap beans, and onions. It is also used on turf on golf courses. Two common fungi that vinclozolin is used to protect crops against are Botrytis cinerea and Sclerotinia sclerotiorum. First registered in 1981, vinclozolin is widely used but its overall application has declined. As a pesticide, vinclozolin is regulated by the United States Environmental Protection Agency. In addition to these restrictions within the United States, as of 2006 the use of this pesticide was banned in several countries, including Denmark, Finland, Norway, and Sweden. It has gone through a series of tests and regulations in order to evaluate the risks and hazards to the environment and animals. Among the research, a main finding is that vinclozolin has been shown to be an endocrine disruptor with antiandrogenic effects.

<span class="mw-page-title-main">Endosulfan</span> Chemical compound

Endosulfan is an off-patent organochlorine insecticide and acaricide that is being phased out globally. It became a highly controversial agrichemical due to its acute toxicity, potential for bioaccumulation, and role as an endocrine disruptor. Because of its threats to human health and the environment, a global ban on the manufacture and use of endosulfan was negotiated under the Stockholm Convention in April 2011. The ban took effect in mid-2012, with certain uses exempted for five additional years. More than 80 countries, including the European Union, Australia, New Zealand, several West African nations, the United States, Brazil, and Canada had already banned it or announced phase-outs by the time the Stockholm Convention ban was agreed upon. It is still used extensively in India and China despite laws against its use. It is also used in a few other countries. It is produced by the Israeli firm Makhteshim Agan and several manufacturers in India and China. On 13.05.2011, the India Supreme Court ordered a ban on the production and sale of endosulfan in India, pending further notice.

<span class="mw-page-title-main">Endrin</span> Chemical compound

Endrin is an organochlorine compound with the chemical formula C12H8Cl6O that was first produced in 1950 by Shell and Velsicol Chemical Corporation. It was primarily used as an insecticide, as well as a rodenticide and piscicide. It is a colourless, odorless solid, although commercial samples are often off-white. Endrin was manufactured as an emulsifiable solution known commercially as Endrex. The compound became infamous as a persistent organic pollutant and for this reason it is banned in many countries.

<span class="mw-page-title-main">HPTE</span> Chemical compound

HPTE, also known as hydroxychlor, p,p'-hydroxy-DDT, or 2,2-bis(4-hydroxyphenyl)-1,1,1-trichloroethane, is a metabolite of methoxychlor, a synthetic insecticide related to DDT. Like bisphenol A with similar chemical structure, HPTE is an endocrine disruptor which has estrogenic activity, and also inhibits Cholesterol side-chain cleavage enzyme and 3α-hydroxysteroid dehydrogenase (3α-HSD).

<span class="mw-page-title-main">Environmental toxicology</span>

Environmental toxicology is a multidisciplinary field of science concerned with the study of the harmful effects of various chemical, biological and physical agents on living organisms. Ecotoxicology is a subdiscipline of environmental toxicology concerned with studying the harmful effects of toxicants at the population and ecosystem levels.

<span class="mw-page-title-main">Reproductive toxicity</span> A hazard associated with chemical substances

Reproductive toxicity refers to the potential risk from a given chemical, physical or biologic agent to adversely affect both male and female fertility as well as offspring development. Reproductive toxicants may adversely affect sexual function, ovarian failure, fertility as well as causing developmental toxicity in the offspring. Lowered effective fertility related to reproductive toxicity relates to both male and female effects alike and is reflected in decreased sperm counts, semen quality and ovarian failure. Infertility is medically defined as a failure of a couple to conceive over the course of one year of unprotected intercourse. As many as 20% of couples experience infertility. Among men, oligospermia is defined as a paucity of viable spermatozoa in the semen, whereas azoospermia refers to the complete absence of viable spermatozoa in the semen.

<span class="mw-page-title-main">Hexachlorocyclopentadiene</span> Chemical compound

Hexachlorocyclopentadiene (HCCPD), also known as C-56, Graphlox, and HRS 1655, is an organochlorine compound with the formula C5Cl6. It is a precursor to pesticides, flame retardants, and dyes. It is a colourless liquid, although commercial samples appear lemon-yellow liquid sometimes with a bluish vapour. Many of its derivatives proved to be highly controversial, as studies showed them to be persistent organic pollutants. An estimated 270,000 tons were produced until 1976, and smaller amounts continue to be produced today. Two prominent manufacturers are Velsicol Chemical Corporation in the US and by Jiangsu Anpon Electrochemicals Co. in China.

<span class="mw-page-title-main">Health effects of pesticides</span> Medical condition

Health effects of pesticides may be acute or delayed in those who are exposed. Acute effects can include pesticide poisoning, which may be a medical emergency. Strong evidence exists for other, long-term negative health outcomes from pesticide exposure including birth defects, fetal death, neurodevelopmental disorder, cancer, and neurologic illness including Parkinson's disease. Toxicity of pesticides depend on the type of chemical, route of exposure, dosage, and timing of exposure.

Sex is influenced by water pollutants that are encountered in everyday life. These sources of water can range from the simplicity of a water fountain to the entirety of the oceans. The pollutants within the water range from endocrine disruptor chemicals (EDCs) in birth control to Bisphenol A (BPA). Foreign substances such as chemical pollutants that cause an alteration of sex have been found in growing prevalence in the circulating waters of the world. These pollutants have affected not only humans, but also animals in contact with the pollutants.

References

  1. 1 2 3 4 5 NIOSH Pocket Guide to Chemical Hazards. "#0388". National Institute for Occupational Safety and Health (NIOSH).
  2. "Methoxychlor". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  3. 1 2 3 United States Environmental Protection Agency (2006-11-26). "Consumer Factsheet on: METHOXYCHLOR".
  4. Karickhoff; et al. (1979). "Sorption of Hyrdophobic Pollutants on Natural Sediments". Water Research. 13 (3): 241–248. Bibcode:1979WatRe..13..241K. doi:10.1016/0043-1354(79)90201-x.
  5. U.S. Environmental Protection Agency (June 30, 2004). "Methoxychlor Reregistration Eligibility Decision (RED) EPA Publication No. EPA 738-R-04-010" . Retrieved 2009-10-02.
  6. European Union - DG SANCO. "EU Pesticides Database" . Retrieved 2009-10-02.
  7. "Governments accelerate action and take bold decisions to address pollution from chemicals and wastes". Secretariat of the Basel, Rotterdam and Stockholm Conventions. May 15, 2023. Retrieved 7 July 2023.
  8. 1 2 3 4 5 6 7 ATSDR (September 2002). "Public Health Statement about Methoxychlor" (PDF)., accessed 08-22-2008
  9. Akingbemi BT, et al. (2000). "A Metabolite of Methoxychlor, 2,2-Bis(p-Hydroxyphenyl)-1,1,1-Trichloroethane, Reduces Testosterone Biosynthesis in Rat Leydig Cells Through Suppression of Steady-State Messenger Ribonucleic Acid Levels of the Cholesterol Side-Chain Cleavage Enzyme". Biology of Reproduction. 62 (3): 571–578. doi: 10.1095/biolreprod62.3.571 . PMID   10684797.
  10. Cummings AW (1997). "Methoxychlor as a model for environmental estrogens". Crit Rev Toxicol. 27 (4): 367–79. doi:10.3109/10408449709089899. PMID   9263644.