Names | |
---|---|
Preferred IUPAC name 1,1′-(2,2,2-Trichloroethane-1,1-diyl)bis(4-methoxybenzene) | |
Other names Methoxcide Dimethoxy-DDT Methoxy-DDT p,p'-Dimethoxydiphenyltrichloroethane | |
Identifiers | |
3D model (JSmol) | |
Abbreviations | DMDT |
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.000.709 |
KEGG | |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C16H15Cl3O2 | |
Molar mass | 345.65 g/mol |
Appearance | Colorless to light-yellow crystals |
Odor | Slight, fruity odor |
Density | 1.41 g/cm3 (20°C) [1] |
Melting point | 87 °C (189 °F; 360 K) |
Boiling point | decomposes |
0.00001% (20°C) [1] | |
Hazards | |
Lethal dose or concentration (LD, LC): | |
LD50 (median dose) | 5000 mg/kg (oral, rat) 1000 mg/kg (oral, mouse) >6000 mg/kg (oral, rabbit) [2] |
NIOSH (US health exposure limits): | |
PEL (Permissible) | TWA 15 mg/m3 [1] |
REL (Recommended) | Ca [1] |
IDLH (Immediate danger) | Ca [5000 mg/m3] [1] |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Methoxychlor is a synthetic organochloride insecticide, now obsolete. Tradenames for methoxychlor include Chemform, Maralate, Methoxo, Methoxcide, Metox, and Moxie.
Methoxychlor was used to protect crops, ornamentals, livestock, and pets against fleas, mosquitoes, cockroaches, and other insects. It was intended to be a replacement for DDT, but has since been banned for use as a pesticide based on its acute toxicity, bioaccumulation, and endocrine disruption activity. [3]
The amount of methoxychlor in the environment changes seasonally due to its use in farming and foresting. It does not dissolve readily in water, so it is mixed with a petroleum-based fluid and sprayed, or used as a dust. Sprayed methoxychlor settles on the ground or in aquatic ecosystems, where it can be detected in sediments. [4] Its degradation may take many months. Methoxychlor is ingested and absorbed by living organisms, and it accumulates in the food chain. Some metabolites may have unwanted side effects.
The use of methoxychlor as a pesticide was banned in the United States in 2003 [5] and in the European Union in 2002. [6]
The EPA lists methoxychlor as "a persistent, bioaccumulative, and toxic (PBT) chemical by the EPA Toxics Release Inventory (TRI) program", [3] and as such it is a waste minimization priority chemical. The 2023 Conference of the Parties of the United Nations Stockholm Convention on Persistent Organic Pollutants decided to eliminate the use of methoxychlor, by listing this chemical in Annex A to the Convention. [7]
Human exposure to methoxychlor occurs via air, soil, and water, [8] primarily in people who work with the substance or who are exposed to air, soil, or water that has been contaminated. It is unknown how quickly and efficiently the substance is absorbed by humans who have been exposed to contaminated air or via skin contact. [8] In animal models, high doses can lead to neurotoxicity. [8] Some methoxychlor's metabolites have estrogenic effects in adult and developing animals before and after birth. [8] One studied metabolite is 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE) which shows reproductive toxicity in an animal model by reducing testosterone biosynthesis. [9] [10] Such effects adversely affect both the male and female reproductive systems. It is expected that this "could occur in humans" but has not been proven. [8] While one study has linked methoxychlor to the development of leukemia in humans, most studies in animals and humans have been negative, thus the EPA has determined that it is not classifiable as a carcinogen. The EPA indicates that levels above the Maximum Contaminant Level of 40 ppb "cause" central nervous depression, diarrhea, damage to liver, kidney, and heart, and - by chronic exposure - growth retardation. [3]
Little information is available regarding effects on human pregnancy and children, but it is assumed from animals studies that methoxychlor crosses the placenta, and it has been detected in human milk [8] Exposure to children may be different than in adults because they tend to play on the ground, further, their reproductive system may be more sensitive to the effects of methoxychlor as an endocrine disruptor.[ citation needed ]
Food contamination may occur at low levels and it is recommended to wash all foods. [8] A number of hazardous waste sites are known to contain methoxychlor.
Maximum pesticide residue limits for the EU/UK are set at 0.01 mg/kg for oranges and 0.01 mg/kg for apples.
Chlordane, or chlordan, is an organochlorine compound that was used as a pesticide. It is a white solid. In the United States, chlordane was used for termite-treatment of approximately 30 million homes until it was banned in 1988. Chlordane was banned 10 years earlier for food crops like corn and citrus, and on lawns and domestic gardens.
Lindane, also known as gamma-hexachlorocyclohexane (γ-HCH), gammaxene, Gammallin and benzene hexachloride (BHC), is an organochlorine chemical and an isomer of hexachlorocyclohexane that has been used both as an agricultural insecticide and as a pharmaceutical treatment for lice and scabies.
Carbofuran is a carbamate pesticide, widely used around the world to control insects on a wide variety of field crops, including potatoes, corn and soybeans. It is a systemic insecticide, which means that the plant absorbs it through the roots, and from there the plant distributes it throughout its organs where insecticidal concentrations are attained. Carbofuran also has contact activity against pests. It is one of the most toxic pesticides still in use.
Dicofol is an insecticide, an organochlorine that is chemically related to DDT. Dicofol is a miticide that is very effective against spider mite. Its production and use is banned internationally under the Stockholm Convention.
Endocrine disruptors, sometimes also referred to as hormonally active agents, endocrine disrupting chemicals, or endocrine disrupting compounds are chemicals that can interfere with endocrine systems. These disruptions can cause numerous adverse human health outcomes, including alterations in sperm quality and fertility; abnormalities in sex organs‚ endometriosis‚ early puberty‚ altered nervous system or immune function; certain cancers; respiratory problems; metabolic issues; diabetes, obesity, or cardiovascular problems; growth, neurological and learning disabilities, and more. Found in many household and industrial products, endocrine disruptors "interfere with the synthesis, secretion, transport, binding, action, or elimination of natural hormones in the body that are responsible for development, behavior, fertility, and maintenance of homeostasis ."
Persistent organic pollutants (POPs) are organic compounds that are resistant to degradation through chemical, biological, and photolytic processes. They are toxic and adversely affect human health and the environment around the world. Because they can be transported by wind and water, most POPs generated in one country can and do affect people and wildlife far from where they are used and released.
Atrazine is a chlorinated herbicide of the triazine class. It is used to prevent pre-emergence broadleaf weeds in crops such as maize (corn), soybean and sugarcane and on turf, such as golf courses and residential lawns. Atrazine's primary manufacturer is Syngenta and it is one of the most widely used herbicides in the United States, Canadian, and Australian agriculture. Its use was banned in the European Union in 2004, when the EU found groundwater levels exceeding the limits set by regulators, and Syngenta could not show that this could be prevented nor that these levels were safe.
Dieldrin is an organochlorine compound originally produced in 1948 by J. Hyman & Co, Denver, as an insecticide. Dieldrin is closely related to aldrin, which reacts further to form dieldrin. Aldrin is not toxic to insects; it is oxidized in the insect to form dieldrin which is the active compound. Both dieldrin and aldrin are named after the Diels-Alder reaction which is used to form aldrin from a mixture of norbornadiene and hexachlorocyclopentadiene.
Xenoestrogens are a type of xenohormone that imitates estrogen. They can be either synthetic or natural chemical compounds. Synthetic xenoestrogens include some widely used industrial compounds, such as PCBs, BPA, and phthalates, which have estrogenic effects on a living organism even though they differ chemically from the estrogenic substances produced internally by the endocrine system of any organism. Natural xenoestrogens include phytoestrogens which are plant-derived xenoestrogens. Because the primary route of exposure to these compounds is by consumption of phytoestrogenic plants, they are sometimes called "dietary estrogens". Mycoestrogens, estrogenic substances from fungi, are another type of xenoestrogen that are also considered mycotoxins.
Vinclozolin is a common dicarboximide fungicide used to control diseases, such as blights, rots and molds in vineyards, and on fruits and vegetables such as raspberries, lettuce, kiwi, snap beans, and onions. It is also used on turf on golf courses. Two common fungi that vinclozolin is used to protect crops against are Botrytis cinerea and Sclerotinia sclerotiorum. First registered in 1981, vinclozolin is widely used but its overall application has declined. As a pesticide, vinclozolin is regulated by the United States Environmental Protection Agency. In addition to these restrictions within the United States, as of 2006 the use of this pesticide was banned in several countries, including Denmark, Finland, Norway, and Sweden. It has gone through a series of tests and regulations in order to evaluate the risks and hazards to the environment and animals. Among the research, a main finding is that vinclozolin has been shown to be an endocrine disruptor with antiandrogenic effects.
Endosulfan is an off-patent organochlorine insecticide and acaricide that is being phased out globally. It became a highly controversial agrichemical due to its acute toxicity, potential for bioaccumulation, and role as an endocrine disruptor. Because of its threats to human health and the environment, a global ban on the manufacture and use of endosulfan was negotiated under the Stockholm Convention in April 2011. The ban took effect in mid-2012, with certain uses exempted for five additional years. More than 80 countries, including the European Union, Australia, New Zealand, several West African nations, the United States, Brazil, and Canada had already banned it or announced phase-outs by the time the Stockholm Convention ban was agreed upon. It is still used extensively in India and China despite laws against its use. It is also used in a few other countries. It is produced by the Israeli firm Makhteshim Agan and several manufacturers in India and China. On May 13, 2011, the India Supreme Court ordered a ban on the production and sale of endosulfan in India, pending further notice.
Endrin is an organochlorine compound with the chemical formula C12H8Cl6O that was first produced in 1950 by Shell and Velsicol Chemical Corporation. It was primarily used as an insecticide, as well as a rodenticide and piscicide. It is a colourless, odorless solid, although commercial samples are often off-white. Endrin was manufactured as an emulsifiable solution known commercially as Endrex. The compound became infamous as a persistent organic pollutant and for this reason it is banned in many countries.
Dichlorvos is an organophosphate widely used as an insecticide to control household pests, in public health, and protecting stored products from insects. The compound has been commercially available since 1961. It has become controversial because of its prevalence in urban waterways and the fact that its toxicity extends well beyond insects. Since 1988, dichlorvos cannot be used as a plant protection product in the EU.
HPTE, also known as hydroxychlor, p,p'-hydroxy-DDT, or 2,2-bis(4-hydroxyphenyl)-1,1,1-trichloroethane, is a metabolite of methoxychlor, a synthetic insecticide related to DDT. Like bisphenol A with similar chemical structure, HPTE is an endocrine disruptor which has estrogenic activity, and also inhibits Cholesterol side-chain cleavage enzyme and 3α-hydroxysteroid dehydrogenase (3α-HSD).
Environmental toxicology is a multidisciplinary field of science concerned with the study of the harmful effects of various chemical, biological and physical agents on living organisms. Ecotoxicology is a subdiscipline of environmental toxicology concerned with studying the harmful effects of toxicants at the population and ecosystem levels.
Reproductive toxicity refers to the potential risk from a given chemical, physical or biologic agent to adversely affect both male and female fertility as well as offspring development. Reproductive toxicants may adversely affect sexual function, ovarian failure, fertility as well as causing developmental toxicity in the offspring. Lowered effective fertility related to reproductive toxicity relates to both male and female effects alike and is reflected in decreased sperm counts, semen quality and ovarian failure.
Hexachlorocyclopentadiene (HCCPD), also known as C-56, Graphlox, and HRS 1655, is an organochlorine compound with the formula C5Cl6. It is a precursor to pesticides, flame retardants, and dyes. It is a colourless liquid, although commercial samples appear lemon-yellow liquid sometimes with a bluish vapour. Many of its derivatives proved to be highly controversial, as studies showed them to be persistent organic pollutants. An estimated 270,000 tons were produced until 1976, and smaller amounts continue to be produced today.
Health effects of pesticides may be acute or delayed in those who are exposed. Acute effects can include pesticide poisoning, which may be a medical emergency. Strong evidence exists for other, long-term negative health outcomes from pesticide exposure including birth defects, fetal death, neurodevelopmental disorder, cancer, and neurologic illness including Parkinson's disease. Toxicity of pesticides depend on the type of chemical, route of exposure, dosage, and timing of exposure.
Xenohormones or environmental hormones are compounds produced outside of the human body which exhibit endocrine hormone-like properties. They may be either of natural origin, such as phytoestrogens, which are derived from plants, or of synthetic origin. These compounds can cause endocrine disruption by multiple mechanisms including acting directly on hormone receptors, affecting the levels of natural hormones in the body, and by altering the expression of hormone receptors. The most commonly occurring xenohormones are xenoestrogens, which mimic the effects of estrogen. Other xenohormones include xenoandrogens and xenoprogesterones. Xenohormones are used for a variety of purposes including contraceptive & hormonal therapies, and agriculture. However, exposure to certain xenohormones early in childhood development can lead to a host of developmental issues including infertility, thyroid complications, and early onset of puberty. Exposure to others later in life has been linked to increased risks of testicular, prostate, ovarian, and uterine cancers.
Sex is influenced by water pollutants that are encountered in everyday life. These sources of water can range from the simplicity of a water fountain to the entirety of the oceans. The pollutants within the water range from endocrine disruptor chemicals (EDCs) in birth control to Bisphenol A (BPA). Foreign substances such as chemical pollutants that cause an alteration of sex have been found in growing prevalence in the circulating waters of the world. These pollutants have affected not only humans, but also animals in contact with the pollutants.