Chlordane

Last updated
Chlordane
Cis-chlordane.svg
cis-chlordane (α-chlordane)
Trans-chlordane.svg
trans-chlordane (γ-chlordane, beta-chlordane)
Cis-chlordane-3D-balls.png
cis-chlordane
Trans-chlordane-3D-balls.png
trans-chlordane
Names
Systematic IUPAC name
1,2,4,5,6,7,8,8-Octachloro-3a,4,7,7a-tetrahydro-4,7-methanoindane
Other names
Chlordan; Chlordano; Ortho; Octachloro-4,7-methanohydroindane
Identifiers
ECHA InfoCard 100.000.317 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
Properties
C10H6Cl8
Molar mass 409.76 g·mol−1
AppearanceWhite solid
Odor Slightly pungent, chlorine-like
Density 1.59 g/cm3
Melting point 102–106 °C (216–223 °F; 375–379 K) [1]
Boiling point decomposes [1]
0.0001% (20°C) [1]
1.565
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
potential occupational carcinogen
GHS labelling:
GHS-pictogram-skull.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
Danger
H301, H311, H351, H410
P201, P273, P280, P301+P310+P330, P302+P352+P312 [2]
Flash point 107 °C (225 °F; 380 K) (open cup)
Explosive limits 0.7–5%
Lethal dose or concentration (LD, LC):
590 mg/kg (rat, oral)
100 mg/kg (rabbit, oral)
430 mg/kg (mouse, oral)
300 mg/kg (rabbit, oral)
145 mg/kg (mouse, oral)
1720 mg/kg (hamster, oral)
200 mg/kg (rat, oral) [3]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 0.5 mg/m3 [skin] [1]
REL (Recommended)
Ca TWA 0.5 mg/m3 [skin] [1]
IDLH (Immediate danger)
100 mg/m3 [1]
Safety data sheet (SDS) Chlordane (technical mixture)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Chlordane, or chlordan, is an organochlorine compound that was used as a pesticide. It is a white solid. In the United States, chlordane was used for termite-treatment of approximately 30 million homes until it was banned in 1988. [4] Chlordane was banned 10 years earlier for food crops like corn and citrus, and on lawns and domestic gardens. [5]

Contents

Like other chlorinated cyclodiene insecticides, chlordane is classified as an organic pollutant hazardous for human health. It is resistant to degradation in the environment and in humans/animals and readily accumulates in lipids (fats) of humans and animals. [6] Exposure to the compound has been linked to cancers, diabetes, and neurological disorders.

Production, composition and uses

Technical chlordane development was by chance at Velsicol Chemical Corporation by Julius Hyman in 1948, during a search for possible uses of a by-product of synthetic rubber manufacturing. By chlorinating this by-product, persistent and potent insecticides were easily and cheaply produced. The chlorine atoms, 7 in the case of heptachlor, 8 in chlordane, and 9 in the case of nonachlor, surround and stabilize the cyclodiene ring and thus these compounds are referred to as cyclodienes. Other members of the cyclodiene family of organochlorine insecticides are aldrin and its epoxide, dieldrin, as well as endrin, which is a stereoisomer of dieldrin. Cyclodiene derives its name from hexachlorocyclopentadiene, a precursor in its production.

Synthesis of cis- (above) and trans-chlordane (below) Synthese Chlordan.svg
Synthesis of cis- (above) and trans-chlordane (below)

Hexachlorocyclopentadiene forms a Diels-Alder adduct with cyclopentadiene to give chlordene intermediate [3734-48-3]; chlorination of this adduct gives predominantly two chlordane isomers, α and β, in addition to other products such as trans-nonachlor and heptachlor. [7] The β-isomer is popularly known as gamma and is more bioactive. [5] The mixture that is composed of 147 components is called technical chlordane. [8] [9]

Chlordane appears as a white or off-white crystals when synthesized, but it was more commonly sold in various formulations as oil solutions, emulsions, sprays, dusts, and powders. These products were sold in the United States from 1948 to 1988.

Because of concern for harm to human health and to the environment, the United States Environmental Protection Agency (EPA) banned all uses of chlordane in 1983, except termite control in wooden structures (e.g. houses). After many reports of chlordane in the indoor air of treated homes, EPA banned the remaining use of chlordane in 1988. [10] The EPA recommends that children should not drink water with more than 60 parts of chlordane per billion parts of drinking water (60 ppb) for longer than 1 day. EPA has set a limit in drinking water of 2 ppb.[ citation needed ]

Chlordane is very persistent in the environment because it does not break down easily. Tests of the air in the residence of U.S. government housing, 32 years after chlordane treatment, showed levels of chlordane and heptachlor 10-15 times the Minimal Risk Levels (20 nanograms/cubic meter of air) published by the Centers for Disease Control.[ citation needed ] It has an environmental half-life of 10 to 20 years. [11]

Origin, pathways of exposure, and processes of excretion

Sources and pathways that chlordane contaminates the indoor air of American homes Toxhouse.jpg
Sources and pathways that chlordane contaminates the indoor air of American homes

In the years 19481988 chlordane was a common pesticide for corn and citrus crops, as well as a method of home termite control. [6] Pathways of exposure to chlordane include ingestion of crops grown in chlordane-contaminated soil, inhalation of air in chlordane-treated homes and from landfills, and ingestion of high-fat foods such as meat, fish, and dairy, as chlordane builds up in fatty tissue. [12] The United States Environmental Protection Agency reported that over 30 million homes were treated with technical chlordane or technical chlordane with heptachlor. Depending on the site of home treatment, the indoor air levels of chlordane can still exceed the Minimal Risks Levels (MRLs) for both cancer and chronic disease by orders of magnitude. [13] Chlordane is excreted slowly through feces, urine elimination, and through breast milk in nursing mothers. It is able to cross the placenta and become absorbed by developing fetuses in pregnant women. [14] A breakdown product of chlordane, the metabolite oxychlordane, accumulates in blood and adipose tissue with age. [15]

Environmental impact

Being hydrophobic, chlordane adheres to soil particles and enters groundwater only slowly, owing to its low solubility (0.009 ppm). It requires many years to degrade. [16] Chlordane bioaccumulates in animals. [17] It is highly toxic to fish, with an LD50 of 0.022–0.095 mg/kg (oral).

Oxychlordane (C10H4Cl8O), the primary metabolite of chlordane, and heptachlor epoxide, the primary metabolite of heptachlor, along with the two other main components of the chlordane mixture, cis-nonachlor and trans-nonachlor, are the main bioaccumulating constituents. [8] trans-Nonachlor is more toxic than technical chlordane and cis-nonachlor is less toxic. [8]

Chlordane and heptachlor are known as persistent organic pollutants (POP), classified among the "dirty dozen" and banned by the 2001 Stockholm Convention on Persistent Organic Pollutants. [18]

Health effects

Exposure to chlordane/heptachlor and/or its metabolites (oxychlordane, heptachlor epoxide) are risk factors for type-2 diabetes, [19] for lymphoma, [20] for prostate cancer, [21] for obesity, [22] for testicular cancer, [23] for breast cancer. [24]

An epidemiological study conducted by the National Cancer Institute reported that higher levels of chlordane in dust on the floors of homes were associated with higher rates of non-Hodgkin lymphoma in occupants. [25] Breathing chlordane in indoor air is the main route of exposure for these levels in human tissues. Currently, EPA has defined a concentration of 24 nanogram per cubic meter of air (ng/M3) for chlordane compounds over a 20-year exposure period as the concentration that will increase the probability of cancer by 1 in 1,000,000 persons. This probability of developing cancer increases to 10 in 1,000,000 persons with an exposure of 100 ng/m3 and 100 in 1,000,000 with an exposure of 1000 ng/m3. [26]

The non-cancer health effects of chlordane compounds, which include diabetes, insulin resistance, migraines, respiratory infections, immune-system activation, anxiety, depression, blurry vision, confusion, intractable seizures as well as permanent neurological damage, [27] probably affects more people than cancer. Trans-nonachlor and oxychlordane in serum of mothers during gestation has been linked with behaviors associated with autism in offspring at age 4–5. [28] The Agency for Toxic Substances and Disease Registry (ATSDR) has defined a concentration of chlordane compounds of 20 ng/m3 as the Minimal Risk Level (MRLs). ATSDR defines Minimal Risk Level as an estimate of daily human exposure to a dose of a chemical that is likely to be without an appreciable risk of adverse non-cancerous effects over a specific duration of exposure. [29]

Remediation

Chlordane was applied under the home/building during treatment for termites and the half-life can be up to 30 years. Chlordane has a low vapor pressure and volatilizes slowly into the air of home/building above. To remove chlordane from indoor air requires either ventilation (Heat Exchange Ventilation) or activated carbon filtration. Chemical remediation of chlordane in soils was attempted by the US Army Corps of Engineers by mixing chlordane with aqueous lime and persulfate. In a phytoremediation study, Kentucky bluegrass and Perennial ryegrass were found to be minimally affected by chlordane, and both were found to take it up into their roots and shoots. [30] Mycoremediation of chlordane in soil have found that contamination levels were reduced. [30] The fungus Phanerochaete chrysosporium has been found to reduce concentrations of chlordane by 21% in water in 30 days and in solids in 60 days. [31]

Related Research Articles

<span class="mw-page-title-main">Pesticide</span> Substance used to destroy pests

Pesticides are substances that are meant to control pests. This includes herbicide, insecticide, nematicide, molluscicide, piscicide, avicide, rodenticide, bactericide, insect repellent, animal repellent, microbicide, fungicide, and lampricide. The most common of these are herbicides, which account for approximately 50% of all pesticide use globally. Most pesticides are intended to serve as plant protection products, which in general, protect plants from weeds, fungi, or insects. In general, a pesticide is a chemical or biological agent that deters, incapacitates, kills, or otherwise discourages pests. Target pests can include insects, plant pathogens, weeds, molluscs, birds, mammals, fish, nematodes (roundworms), and microbes that destroy property, cause nuisance, or spread disease, or are disease vectors. Along with these benefits, pesticides also have drawbacks, such as potential toxicity to humans and other species.

<span class="mw-page-title-main">Chlordecone</span> Chemical compound

Chlordecone, better known in the United States under the brand name Kepone, is an organochlorine compound and a colourless solid. It is an obsolete insecticide, now prohibited in the western world, but only after many thousands of tonnes had been produced and used. Chlordecone is a known persistent organic pollutant (POP) that was banned globally by the Stockholm Convention on Persistent Organic Pollutants in 2009.

<span class="mw-page-title-main">Lindane</span> Organochlorine chemical and an isomer of hexachlorocyclohexane

Lindane, also known as gamma-hexachlorocyclohexane (γ-HCH), gammaxene, Gammallin and benzene hexachloride (BHC), is an organochlorine chemical and an isomer of hexachlorocyclohexane that has been used both as an agricultural insecticide and as a pharmaceutical treatment for lice and scabies.

<span class="mw-page-title-main">Parathion</span> Chemical compound

Parathion, also called parathion-ethyl or diethyl parathion and locally known as "Folidol", is an organophosphate insecticide and acaricide. It was originally developed by IG Farben in the 1940s. It is highly toxic to non-target organisms, including humans, so its use has been banned or restricted in most countries. The basic structure is shared by parathion methyl.

<span class="mw-page-title-main">Malathion</span> Chemical compound

Malathion is an organophosphate insecticide which acts as an acetylcholinesterase inhibitor. In the USSR, it was known as carbophos, in New Zealand and Australia as maldison and in South Africa as mercaptothion.

<span class="mw-page-title-main">Organophosphate</span> Organic compounds with the structure O=P(OR)3

In organic chemistry, organophosphates are a class of organophosphorus compounds with the general structure O=P(OR)3, a central phosphate molecule with alkyl or aromatic substituents. They can be considered as esters of phosphoric acid.

<span class="mw-page-title-main">Persistent organic pollutant</span> Organic compounds that are resistant to environmental degradation

Persistent organic pollutants (POPs) are organic compounds that are resistant to degradation through chemical, biological, and photolytic processes. They are toxic chemicals that adversely affect human health and the environment around the world. Because they can be transported by wind and water, most POPs generated in one country can and do affect people and wildlife far from where they are used and released.

<span class="mw-page-title-main">Dieldrin</span> Chemical compound

Dieldrin is an organochlorine compound originally produced in 1948 by J. Hyman & Co, Denver, as an insecticide. Dieldrin is closely related to aldrin, which reacts further to form dieldrin. Aldrin is not toxic to insects; it is oxidized in the insect to form dieldrin which is the active compound. Both dieldrin and aldrin are named after the Diels-Alder reaction which is used to form aldrin from a mixture of norbornadiene and hexachlorocyclopentadiene.

<span class="mw-page-title-main">Toxaphene</span> Chemical compound

Toxaphene was an insecticide used primarily for cotton in the southern United States during the late 1960s and the 1970s. Toxaphene is a mixture of over 670 different chemicals and is produced by reacting chlorine gas with camphene. It can be most commonly found as a yellow to amber waxy solid.

<span class="mw-page-title-main">Heptachlor</span> Chemical compound

Heptachlor is an organochlorine compound that was used as an insecticide. Usually sold as a white or tan powder, heptachlor is one of the cyclodiene insecticides. In 1962, Rachel Carson's Silent Spring questioned the safety of heptachlor and other chlorinated insecticides. Due to its highly stable structure, heptachlor can persist in the environment for decades. In the United States, the Environmental Protection Agency has limited the sale of heptachlor products to the specific application of fire ant control in underground transformers. The amount that can be present in different foods is regulated.

<span class="mw-page-title-main">Aldrin</span> Chemical compound

Aldrin is an organochlorine insecticide that was widely used until the 1990s, when it was banned in most countries. Aldrin is a member of the so-called "classic organochlorines" (COC) group of pesticides. COCs enjoyed a very sharp rise in popularity during and after World War II. Other noteworthy examples of COCs include dieldrin and DDT. After research showed that organochlorines can be highly toxic to the ecosystem through bioaccumulation, most were banned from use. Before the ban, it was heavily used as a pesticide to treat seed and soil. Aldrin and related "cyclodiene" pesticides became notorious as persistent organic pollutants.

<span class="mw-page-title-main">Endosulfan</span> Chemical compound

Endosulfan is an off-patent organochlorine insecticide and acaricide that is being phased out globally. It became a highly controversial agrichemical due to its acute toxicity, potential for bioaccumulation, and role as an endocrine disruptor. Because of its threats to human health and the environment, a global ban on the manufacture and use of endosulfan was negotiated under the Stockholm Convention in April 2011. The ban took effect in mid-2012, with certain uses exempted for five additional years. More than 80 countries, including the European Union, Australia, New Zealand, several West African nations, the United States, Brazil, and Canada had already banned it or announced phase-outs by the time the Stockholm Convention ban was agreed upon. It is still used extensively in India and China despite laws against its use. It is also used in a few other countries. It is produced by the Israeli firm Makhteshim Agan and several manufacturers in India and China. On 13.05.2011, the India Supreme Court ordered a ban on the production and sale of endosulfan in India, pending further notice.

<span class="mw-page-title-main">Endrin</span> Chemical compound

Endrin is an organochlorine compound with the chemical formula C12H8Cl6O that was first produced in 1950 by Shell and Velsicol Chemical Corporation. It was primarily used as an insecticide, as well as a rodenticide and piscicide. It is a colourless, odorless solid, although commercial samples are often off-white. Endrin was manufactured as an emulsifiable solution known commercially as Endrex. The compound became infamous as a persistent organic pollutant and for this reason it is banned in many countries.

<span class="mw-page-title-main">Mirex</span> Chemical compound

Mirex is an organochloride that was commercialized as an insecticide and later banned because of its impact on the environment. This white crystalline odorless solid is a derivative of cyclopentadiene. It was popularized to control fire ants but by virtue of its chemical robustness and lipophilicity it was recognized as a bioaccumulative pollutant. The spread of the red imported fire ant was encouraged by the use of mirex, which also kills native ants that are highly competitive with the fire ants. The United States Environmental Protection Agency prohibited its use in 1976. It is prohibited by the Stockholm Convention on Persistent Organic Pollutants.

<span class="mw-page-title-main">Soil contamination</span> Pollution of land by human-made chemicals or other alteration

Soil contamination, soil pollution, or land pollution as a part of land degradation is caused by the presence of xenobiotic (human-made) chemicals or other alteration in the natural soil environment. It is typically caused by industrial activity, agricultural chemicals or improper disposal of waste. The most common chemicals involved are petroleum hydrocarbons, polynuclear aromatic hydrocarbons, solvents, pesticides, lead, and other heavy metals. Contamination is correlated with the degree of industrialization and intensity of chemical substance. The concern over soil contamination stems primarily from health risks, from direct contact with the contaminated soil, vapour from the contaminants, or from secondary contamination of water supplies within and underlying the soil. Mapping of contaminated soil sites and the resulting clean ups are time-consuming and expensive tasks, and require expertise in geology, hydrology, chemistry, computer modelling, and GIS in Environmental Contamination, as well as an appreciation of the history of industrial chemistry.

<span class="mw-page-title-main">Methoxychlor</span> Synthetic organochloride insecticide, now obsolete.

Methoxychlor is a synthetic organochloride insecticide, now obsolete. Tradenames for methoxychlor include Chemform, Maralate, Methoxo, Methoxcide, Metox, and Moxie.

<span class="mw-page-title-main">Phosmet</span> Organophosphate non-systemic insecticide

Phosmet is a phthalimide-derived, non-systemic, organophosphate insecticide used on plants and animals. It is mainly used on apple trees for control of codling moth, though it is also used on a wide range of fruit crops, ornamentals, and vines for the control of aphids, suckers, mites, and fruit flies.

<span class="mw-page-title-main">Environmental toxicology</span>

Environmental toxicology is a multidisciplinary field of science concerned with the study of the harmful effects of various chemical, biological and physical agents on living organisms. Ecotoxicology is a subdiscipline of environmental toxicology concerned with studying the harmful effects of toxicants at the population and ecosystem levels.

<span class="mw-page-title-main">Hexachlorocyclopentadiene</span> Chemical compound

Hexachlorocyclopentadiene (HCCPD), also known as C-56, Graphlox, and HRS 1655, is an organochlorine compound with the formula C5Cl6. It is a precursor to pesticides, flame retardants, and dyes. It is a colourless liquid, although commercial samples appear lemon-yellow liquid sometimes with a bluish vapour. Many of its derivatives proved to be highly controversial, as studies showed them to be persistent organic pollutants. An estimated 270,000 tons were produced until 1976, and smaller amounts continue to be produced today. Two prominent manufacturers are Velsicol Chemical Corporation in the US and by Jiangsu Anpon Electrochemicals Co. in China.

<span class="mw-page-title-main">Health effects of pesticides</span> Medical condition

Health effects of pesticides may be acute or delayed in those who are exposed. Acute effects can include pesticide poisoning, which may be a medical emergency. Strong evidence exists for other, long-term negative health outcomes from pesticide exposure including birth defects, fetal death, neurodevelopmental disorder, cancer, and neurologic illness including Parkinson's disease. Toxicity of pesticides depend on the type of chemical, route of exposure, dosage, and timing of exposure.

References

  1. 1 2 3 4 5 6 NIOSH Pocket Guide to Chemical Hazards. "#0112". National Institute for Occupational Safety and Health (NIOSH).
  2. Sigma-Aldrich Co., Chlordane (technical mixture). Retrieved on 2022-03-17.
  3. "Chlordane". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  4. Toxicological Profile for Chlordane, U.S. Department Of Health and Human Services, Agency for Toxic Substances and Disease Registry
  5. 1 2 Robert L. Metcalf "Insect Control" in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2002. doi : 10.1002/14356007.a14_263
  6. 1 2 Agency for Toxic Substances & Disease Registry (ATSDR). Toxic Substances Portal: Chlordane. Last updated September, 2010 [online]. Available at URL: https://wwwn.cdc.gov/TSP/index.aspx?toxid=62
  7. Dearth Mark A.; Hites Ronald A. (1991). "Complete analysis of technical chlordane using negative ionization mass spectrometry". Environ. Sci. Technol. 25 (2): 245–254. Bibcode:1991EnST...25..245D. doi:10.1021/es00014a005.
  8. 1 2 3 Bondy, G. S.; Newsome, WH; Armstrong, CL; Suzuki, CA; Doucet, J; Fernie, S; Hierlihy, SL; Feeley, MM; Barker, MG (2000). "Trans-Nonachlor and cis-Nonachlor Toxicity in Sprague-Dawley Rats: Comparison with Technical Chlordane". Toxicological Sciences. 58 (2): 386–98. doi: 10.1093/toxsci/58.2.386 . PMID   11099650.
  9. Liu W.; Ye J.; Jin M. (2009). "Enantioselective phytoeffects of chiral pesticides". J Agric Food Chem. 57 (6): 2087–2095. doi:10.1021/jf900079y. PMID   19292458.
  10. Pesticides and Breast Cancer Risk: Chlordane Archived 2012-06-14 at the Wayback Machine , Fact Sheet #11, March 1998, Program on Breast Cancer and Environmental Risk Factors Cornell University
  11. Bennett, G. W.; Ballee, D. L.; Hall, R. C.; Fahey, J. F.; Butts, W. L. & Osmun, J. V. (1974). "Persistence and distribution of chlordane and dieldrin applied as termiticides". Bull. Environ. Contam. Toxicol. 11 (1): 64–9. Bibcode:1974BuECT..11...64B. doi:10.1007/BF01685030. PMID   4433785. S2CID   19893147.
  12. Agency for Toxic Substances & Disease Registry (ATSDR). ToxFaqs: September, 1995. Available at URL: http://www.atsdr.cdc.gov/toxfaqs/tfacts31.pdf
  13. Whitmore R. W.; et al. (1994). "Non-occupational exposures to pesticides for residents of two U.S. cities". Archives of Environmental Contamination and Toxicology. 26 (1): 47–59. Bibcode:1994ArECT..26...47W. doi:10.1007/bf00212793. PMID   8110023. S2CID   24736329.
  14. Center for Disease Control and Prevention (CDC). National Report on Human Exposure to Environmental Chemicals: Chemical Information: Chlordane. Last updated November, 2010 [online].
  15. Lee D.; et al. (2007). "Association between serum concentrations of persistent organic pollutants and insulin resistance among nondiabetic adults: Results from the National Health and Nutrition Examination Survey". Diabetes Care. 30 (3): 622–628. doi: 10.2337/dc06-2190 . PMID   17327331.
  16. "ORGANIC (LTD) | PESTICIDES | Chlorodane |". Archived from the original on 2012-07-14. Retrieved 2008-09-19.
  17. Kavita Singh, Wim J.M. Hegeman, Remi W.P.M. Laane, Hing Man Chan (2016). "Review and evaluation of a chiral enrichment model for chlordane enantiomers in the environment". Environmental Reviews. 24 (4): 363–376. doi:10.1139/er-2016-0015.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. The 12 initial POPs under the Stockholm Convention
  19. Evangelou, E; et al. (2016). "Exposure to pesticides and diabetes: A systematic review and meta-analysis". Environment International. 91: 60–68. doi:10.1016/j.envint.2016.02.013. PMID   26909814.
  20. Luo, Dan; et al. (2005). "Exposure to organochlorine pesticides and non-Hodgkin lymphoma: a meta-analysis of observational studies". Scientific Reports. 6: 25768. doi:10.1038/srep25768. PMC   4869027 . PMID   27185567.
  21. Lim, J.E.; et al. (2015). "Body concentrations of persistent organic pollutants and prostate cancer". Environmental Science Pullution Research International. 22 (15): 11275–84. doi:10.1007/s11356-015-4315-z. PMID   25797015. S2CID   207274251.
  22. Tang-Peronard, J. L.; et al. (2011). "Endocrine-disrupting chemicals and obesity development in humans: a review". Obesity Reviews. 12 (8): 622–36. doi:10.1111/j.1467-789x.2011.00871.x. PMID   21457182. S2CID   33272647.
  23. Cook, Michael B; et al. (2011). "Organochlorine compounds and testicular dysgenesis syndrome: human data". International Journal of Andrology. 34 (4): e68–e85. doi:10.1111/j.1365-2605.2011.01171.x. PMC   3145030 . PMID   21668838.
  24. Khanjani, Narges; et al. (2007). "Systematic review and meta-analysis of cylodiene insecticides and breast cancer". Journal of Environmental Science and Health, Part C. 25 (1): 23–52. Bibcode:2007JESHC..25...23K. doi:10.1080/10590500701201711. PMID   17365341. S2CID   5563053.
  25. Colt Joanna S.; et al. (2006). "Residential Insecticde Use and Risk of non-Hodgkin's lymphoma". Cancer Epidemiology, Biomarkers & Prevention. 15 (2): 251–257. doi: 10.1158/1055-9965.EPI-05-0556 . PMID   16492912.
  26. Chlordane (Technical) (CASRN 12789-03-6) | IRIS | US EPA
  27. ATSDR - Medical Management Guidelines (MMGs): Chlordane
  28. J. M. Braun (2014). "Gestational Exposure to Endocrine-Disrupting Chemicals and Reciprocal Social, Repetitive, and Stereotypic Behaviors in 4-and 5-Year-Old Children:The HOME Study". Environmental Health Perspectives. 122 (5): 513–520. doi:10.1289/ehp.1307261. PMC   4014765 . PMID   24622245.
  29. ATSDR - Redirect - Toxicological Profile: Chlordane
  30. 1 2 Medina, Victor F.; Scott A. Waisner; Agnes B. Morrow; Afrachanna D. Butler; David R. Johnson; Allyson Harrison; Catherine C. Nestler. "Legacy Chlordane in Soils from Housing Areas Treated with Organochlorine Pesticides" (PDF). US Army Corps of Engineers. Archived from the original (PDF) on 31 March 2011. Retrieved 10 October 2012.
  31. Kennedy, D.W.; S. D. Aust; J. A. Bumpus (1990). "Comparative biodegradation of alkyl halide insecticides by the White Rot fungus, Phanerochaete chrysosporium". Appl. Environ. Microbiol. 56:2347–2353.