Pyrethrin II

Last updated
Pyrethrin II
Pyrethrin-II-2D-skeletal.svg
Pyrethrin II.png
Names
Preferred IUPAC name
(1S)-2-Methyl-4-oxo-3-[(2Z)-penta-2,4-dien-1-yl]cyclopent-2-en-1-yl (1R,3R)-3-[(1E)-3-methoxy-2-methyl-3-oxoprop-1-en-1-yl]-2,2-dimethylcyclopropane-1-carboxylate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.004.057 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 204-462-6
PubChem CID
UNII
  • InChI=1S/C22H28O5/c1-7-8-9-10-15-14(3)18(12-17(15)23)27-21(25)19-16(22(19,4)5)11-13(2)20(24)26-6/h7-9,11,16,18-19H,1,10,12H2,2-6H3/b9-8+,13-11-/t16-,18?,19?/m0/s1
    Key: VJFUPGQZSXIULQ-CDPVRPLUSA-N
  • CC1=C(C(=O)CC1OC(=O)C2[C@@H](C2(C)C)/C=C(/C)\C(=O)OC)C/C=C/C=C
Properties
C22H28O5
Molar mass 372.45472
Hazards
GHS labelling:
GHS-pictogram-exclam.svg GHS-pictogram-pollu.svg
Warning
H302, H312, H332, H410
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Pyrethrin II is an organic compound that is a potent insecticide. It is one of the two pyrethrins, the other being pyrethrin I. Thousands of tons this mixture are produced annually from chrysanthemum plants, which are cultivated in warm climates. [1]

Whereas pyrethrin I is a derivative of (+)-trans-chrysanthemic acid, in pyrethrin II one methyl group is oxidized to a carboxymethyl group, the resulting core being called pyrethric acid. Knowledge of their chemical structures opened the way for the production of synthetic analogues, which are called pyrethroids. In terms of their biosynthesis, pyrethrins are classified as terpenoids, being derived from dimethylallyl pyrophosphate. [2]

Related Research Articles

Pyrethrum was a genus of several Old World plants now classified as Chrysanthemum or Tanacetum which are cultivated as ornamentals for their showy flower heads. Pyrethrum continues to be used as a common name for plants formerly included in the genus Pyrethrum. Pyrethrum is also the name of a natural insecticide made from the dried flower heads of Chrysanthemum cinerariifolium and Chrysanthemum coccineum. The insecticidal compounds present in these species are pyrethrins.

<i>Chrysanthemum</i> Genus of flowering plants in the daisy family Asteraceae

Chrysanthemums, sometimes called mums or chrysanths, are flowering plants of the genus Chrysanthemum in the family Asteraceae. They are native to East Asia and northeastern Europe. Most species originate from East Asia and the center of diversity is in China. Countless horticultural varieties and cultivars exist.

<span class="mw-page-title-main">Pyrethrin</span> Class of organic chemical compounds with insecticidal properties

The pyrethrins are a class of organic compounds normally derived from Chrysanthemum cinerariifolium that have potent insecticidal activity by targeting the nervous systems of insects. Pyrethrin naturally occurs in chrysanthemum flowers and is often considered an organic insecticide when it is not combined with piperonyl butoxide or other synthetic adjuvants. Their insecticidal and insect-repellent properties have been known and used for thousands of years.

<span class="mw-page-title-main">Pyrethroid</span> Class of chemicals

A pyrethroid is an organic compound similar to the natural pyrethrins, which are produced by the flowers of pyrethrums. Pyrethroids are used as commercial and household insecticides.

<span class="mw-page-title-main">Aminolevulinic acid synthase</span> Class of enzymes

Aminolevulinic acid synthase (ALA synthase, ALAS, or delta-aminolevulinic acid synthase) is an enzyme (EC 2.3.1.37) that catalyzes the synthesis of δ-aminolevulinic acid (ALA) the first common precursor in the biosynthesis of all tetrapyrroles such as hemes, cobalamins and chlorophylls. The reaction is as follows:

Polyketides are a class of natural products derived from a precursor molecule consisting of a chain of alternating ketone (or reduced forms of a ketone) and methylene groups: (-CO-CH2-). First studied in the early 20th century, discovery, biosynthesis, and application of polyketides has evolved. It is a large and diverse group of secondary metabolites caused by its complex biosynthesis which resembles that of fatty acid synthesis. Because of this diversity, polyketides can have various medicinal, agricultural, and industrial applications. Many polyketides are medicinal or exhibit acute toxicity. Biotechnology has enabled discovery of more naturally-occurring polyketides and evolution of new polyketides with novel or improved bioactivity.

<span class="mw-page-title-main">Allethrins</span> Class of synthetic chemicals used as insecticides

The allethrins are a group of related synthetic compounds used in insecticides. They are classified as pyrethroids, i.e. synthetic versions of pyrethrin, a chemical with insecticidal properties found naturally in Chrysanthemum flowers. They were first synthesized in the United States by Milton S. Schechter in 1949. Allethrin was the first pyrethroid.

Mycolic acids are long fatty acids found in the cell walls of the Mycolata taxon, a group of bacteria that includes Mycobacterium tuberculosis, the causative agent of the disease tuberculosis. They form the major component of the cell wall of mycolata species. Despite their name, mycolic acids have no biological link to fungi; the name arises from the filamentous appearance their presence gives mycolata under high magnification. The presence of mycolic acids in the cell wall also gives mycolata a distinct gross morphological trait known as "cording". Mycolic acids were first isolated by Stodola et al. in 1938 from an extract of M. tuberculosis.

Polyketide synthases (PKSs) are a family of multi-domain enzymes or enzyme complexes that produce polyketides, a large class of secondary metabolites, in bacteria, fungi, plants, and a few animal lineages. The biosyntheses of polyketides share striking similarities with fatty acid biosynthesis.

<span class="mw-page-title-main">Fatty acid synthase</span> Class of enzymes

Fatty acid synthase (FAS) is an enzyme that in humans is encoded by the FASN gene.

<span class="mw-page-title-main">Acetolactate synthase</span> Class of enzymes

The acetolactate synthase (ALS) enzyme is a protein found in plants and micro-organisms. ALS catalyzes the first step in the synthesis of the branched-chain amino acids.

<span class="mw-page-title-main">Beta-ketoacyl-ACP synthase</span> Enzyme

In molecular biology, Beta-ketoacyl-ACP synthase EC 2.3.1.41, is an enzyme involved in fatty acid synthesis. It typically uses malonyl-CoA as a carbon source to elongate ACP-bound acyl species, resulting in the formation of ACP-bound β-ketoacyl species such as acetoacetyl-ACP.

<span class="mw-page-title-main">Chrysanthemic acid</span> Chemical compound

Chrysanthemic acid is an organic compound that is related to a variety of natural and synthetic insecticides. It is related to the pyrethrin I and II, as well as the pyrethroids. One of the four stereoisomers, (1R,3R)- or (+)-trans-chrysanthemic acid (pictured), is the acid part of the ester pyrethrin I, which occurs naturally in the seed cases of Chrysanthemum cinerariaefolium. Many synthetic pyrethroids, for example the allethrins, are esters of all four stereoisomers. Staudinger and Ružička named chrysanthemic acid in 1924.

<span class="mw-page-title-main">Isopenicillin N synthase</span>

Isopenicillin N synthase (IPNS) is a non-heme iron protein belonging to the 2-oxoglutarate (2OG)-dependent dioxygenases oxidoreductase family. This enzyme catalyzes the formation of isopenicillin N from δ-(L-α-aminoadipoyl)-L-cysteinyl-D-valine (LLD-ACV).

<span class="mw-page-title-main">Fatty-acyl-CoA synthase</span>

Fatty-acyl-CoA Synthase, or more commonly known as yeast fatty acid synthase, is an enzyme complex responsible for fatty acid biosynthesis, and is of Type I Fatty Acid Synthesis (FAS). Yeast fatty acid synthase plays a pivotal role in fatty acid synthesis. It is a 2.6 MDa barrel shaped complex and is composed of two, unique multi-functional subunits: alpha and beta. Together, the alpha and beta units are arranged in an α6β6 structure. The catalytic activities of this enzyme complex involves a coordination system of enzymatic reactions between the alpha and beta subunits. The enzyme complex therefore consists of six functional centers for fatty acid synthesis.

<span class="mw-page-title-main">Malate synthase</span> Class of enzymes

In enzymology, a malate synthase (EC 2.3.3.9) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Chrysanthemyl diphosphate synthase</span> Class of enzymes

In enzymology, a chrysanthemyl diphosphate synthase is an enzyme involved in the biosynthesis of terpenoids. This enzyme is also known as CPPase. It catalyzes the chemical reaction shown below :

<span class="mw-page-title-main">Pyrethrin I</span> Chemical compound

Pyrethrin I is one of the two pyrethrins, natural organic compounds with potent insecticidal activity. It is an ester of (+)-trans-chrysanthemic acid with (S)-(Z)-pyrethrolone.

<span class="mw-page-title-main">Tetrahydrocannabinolic acid synthase</span> Enzyme

Tetrahydrocannabinolic acid (THCA) synthase is an enzyme responsible for catalyzing the formation of THCA from cannabigerolic acid (CBGA). THCA is the direct precursor of tetrahydrocannabinol (THC), the principal psychoactive component of cannabis, which is produced from various strains of Cannabis sativa. Therefore, THCA synthase is considered to be a key enzyme controlling cannabis psychoactivity. Polymorphisms of THCA synthase result in varying levels of THC in Cannabis plants, resulting in "drug-type" and "fiber-type" C. sativa varieties.

<span class="mw-page-title-main">Jasmolone</span> Chemical compound

Jasmolone is an irregular monoterpene. Irregular monoterpenes are derived from two isoprene C5 units, but do not follow the usual head-to-tail coupling mechanism. Jasmolins are found in pyrethrum flowers. They can specifically be found in the flower heads of Chrysanthemum cinerariaefolium. Jasmolins act as an insecticide for the flower. It is found in the cytoplasm of plants.

References

  1. Robert L. Metcalf “Insect Control” in Ullmann’s Encyclopedia of Industrial Chemistry” Wiley-VCH, Weinheim, 2002. doi : 10.1002/14356007.a14_263
  2. Susan B. Rivera, Bradley D. Swedlund, Gretchen J. King, Russell N. Bell, Charles E. Hussey, Jr., Donna M. Shattuck-Eidens, Wislawa M. Wrobel, Galen D. Peiser, and C. Dale Poulter "Chrysanthemyl diphosphate synthase: Isolation of the gene and characterization of the recombinant non-head-to-tail monoterpene synthase from Chrysanthemum cinerariaefolium" Proceedings of the National Academy of Sciences 2001, volume 98, p 4373-4378. doi : 10.1073/pnas.071543598