Cyantraniliprole

Last updated
Cyantraniliprole
Cyantraniliprole.svg
Names
Preferred IUPAC name
4-Bromo-1-(3-chloropyridin-2-yl)-N-[4-cyano-2-methyl-6-(N-methylcarbamoyl)phenyl]-1H-pyrazole-5-carboxamide
Other names
Cyazypyr; Exirel
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.205.162 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C19H14BrClN6O2/c1-10-6-11(9-22)7-12(18(28)23-2)16(10)25-19(29)14-8-15(20)26-27(14)17-13(21)4-3-5-24-17/h3-8H,1-2H3,(H,23,28)(H,25,29)
    Key: DVBUIBGJRQBEDP-UHFFFAOYSA-N
  • InChI=1/C19H14BrClN6O2/c1-10-6-11(9-22)7-12(18(28)23-2)16(10)25-19(29)14-8-15(20)26-27(14)17-13(21)4-3-5-24-17/h3-8H,1-2H3,(H,23,28)(H,25,29)
    Key: DVBUIBGJRQBEDP-UHFFFAOYAE
  • CC1=CC(=CC(=C1NC(=O)C2=CC(=NN2C3=C(C=CC=N3)Cl)Br)C(=O)NC)C#N
Properties
C19H14BrClN6O2
Molar mass 473.72 g·mol−1
Melting point 217-219 °C
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Cyantraniliprole is an insecticide of the ryanoid class, specifically a diamide insecticide (IRAC MoA group 28). [1] It is approved for use in the United States, Canada, China, and India. [2] Because of its uncommon mechanism of action as a ryanoid, it has activity against pests such as Diaphorina citri that have developed resistance to other classes of insecticides. [3]

Cyantraniliprole is highly toxic to bees, which delayed its initial registration as a pesticide in the United States. [4] As part of an ongoing court dispute by the Center for Biological Diversity, in November 2022, the U.S. Court of Appeals for the D.C. Circuit ordered the United States Environmental Protection Agency to consider harms to plants and animals under the Endangered Species Act, and put in place appropriate protections. [5]

Related Research Articles

<span class="mw-page-title-main">Pesticide</span> Substance used to destroy pests

Pesticides are substances that are meant to control pests. This includes herbicide, insecticide, nematicide, molluscicide, piscicide, avicide, rodenticide, bactericide, insect repellent, animal repellent, microbicide, fungicide, and lampricide. The most common of these are herbicides, which account for approximately 50% of all pesticide use globally. Most pesticides are intended to serve as plant protection products, which in general, protect plants from weeds, fungi, or insects. In general, a pesticide is a chemical or biological agent that deters, incapacitates, kills, or otherwise discourages pests. Target pests can include insects, plant pathogens, weeds, molluscs, birds, mammals, fish, nematodes (roundworms), and microbes that destroy property, cause nuisance, or spread disease, or are disease vectors. Along with these benefits, pesticides also have drawbacks, such as potential toxicity to humans and other species.

<span class="mw-page-title-main">Insecticide</span> Pesticide used against insects

Insecticides are pesticides used to kill insects. They include ovicides and larvicides used against insect eggs and larvae, respectively. Insecticides are used in agriculture, medicine, industry and by consumers. Insecticides are claimed to be a major factor behind the increase in the 20th-century's agricultural productivity. Nearly all insecticides have the potential to significantly alter ecosystems; many are toxic to humans and/or animals; some become concentrated as they spread along the food chain.

<span class="mw-page-title-main">Pesticide resistance</span> Decreased effectiveness of a pesticide on a pest

Pesticide resistance describes the decreased susceptibility of a pest population to a pesticide that was previously effective at controlling the pest. Pest species evolve pesticide resistance via natural selection: the most resistant specimens survive and pass on their acquired heritable changes traits to their offspring. If a pest has resistance then that will reduce the pesticide's efficacy – efficacy and resistance are inversely related.

<span class="mw-page-title-main">Imidacloprid</span> Chemical compound

Imidacloprid is a systemic insecticide belonging to a class of chemicals called the neonicotinoids which act on the central nervous system of insects. The chemical works by interfering with the transmission of stimuli in the insect nervous system. Specifically, it causes a blockage of the nicotinergic neuronal pathway. By blocking nicotinic acetylcholine receptors, imidacloprid prevents acetylcholine from transmitting impulses between nerves, resulting in the insect's paralysis and eventual death. It is effective on contact and via stomach action. Because imidacloprid binds much more strongly to insect neuron receptors than to mammal neuron receptors, this insecticide is more toxic to insects than to mammals.

<span class="mw-page-title-main">Federal Insecticide, Fungicide, and Rodenticide Act</span> US federal law governing pesticide regulation

The Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) is a United States federal law that set up the basic U.S. system of pesticide regulation to protect applicators, consumers, and the environment. It is administered and regulated by the United States Environmental Protection Agency (EPA) and the appropriate environmental agencies of the respective states. FIFRA has undergone several important amendments since its inception. A significant revision in 1972 by the Federal Environmental Pesticide Control Act (FEPCA) and several others have expanded EPA's present authority to oversee the sales and use of pesticides with emphasis on the preservation of human health and protection of the environment by "(1) strengthening the registration process by shifting the burden of proof to the chemical manufacturer, (2) enforcing compliance against banned and unregistered products, and (3) promulgating the regulatory framework missing from the original law".

Chloropicrin, also known as PS and nitrochloroform, is a chemical compound currently used as a broad-spectrum antimicrobial, fungicide, herbicide, insecticide, and nematicide. It was used as a poison gas in World War I. Its chemical structural formula is Cl3CNO2.

<span class="mw-page-title-main">Fipronil</span> Chemical compound

Fipronil is a broad-spectrum insecticide that belongs to the phenylpyrazole chemical family. Fipronil disrupts the insect central nervous system by blocking the ligand-gated ion channel of the GABAA receptor and glutamate-gated chloride (GluCl) channels. This causes hyperexcitation of contaminated insects' nerves and muscles. Fipronil's specificity towards insects is believed to be due to its greater binding affinity for the GABAA receptors of insects than to those of mammals, and for its action on GluCl channels, which do not exist in mammals. As of 2017, there does not appear to be significant resistance among fleas to fipronil.

Neonicotinoids are a class of neurotoxic insecticides chemically similar to nicotine, developed by scientists at Shell and Bayer in the 1980s. Neonicotinoids became among the widest-used insecticides in crop protection because of their efficacy against a broad spectrum of sucking and chewing pests, together with their high specificity to insects, relatively low risk for nontarget organisms and the environment, and versatility of application. They are also widely employed for veterinary purposes including tick and flea control.

<span class="mw-page-title-main">Spinosad</span> Medication

Spinosad is an insecticide based on chemical compounds found in the bacterial species Saccharopolyspora spinosa. The genus Saccharopolyspora was discovered in 1985 in isolates from crushed sugarcane. The bacteria produce yellowish-pink aerial hyphae, with bead-like chains of spores enclosed in a characteristic hairy sheath. This genus is defined as aerobic, Gram-positive, nonacid-fast actinomycetes with fragmenting substrate mycelium. S. spinosa was isolated from soil collected inside a nonoperational sugar mill rum still in the Virgin Islands. Spinosad is a mixture of chemical compounds in the spinosyn family that has a generalized structure consisting of a unique tetracyclic ring system attached to an amino sugar (D-forosamine) and a neutral sugar (tri-Ο-methyl-L-rhamnose). Spinosad is relatively nonpolar and not easily dissolved in water.

<span class="mw-page-title-main">Cyhalothrin</span> Synthetic pyrethroid used as insecticide

Cyhalothrin is the ISO common name for an organic compound that, in specific isomeric forms, is used as a pesticide. It is a pyrethroid, a class of synthetic insecticides that mimic the structure and properties of the naturally occurring insecticide pyrethrin which is present in the flowers of Chrysanthemum cinerariifolium. Pyrethroids such as cyhalothrin are often preferred as an active ingredient in agricultural insecticides because they are more cost-effective and longer acting than natural pyrethrins. λ-and γ-cyhalothrin are now used to control insects and spider mites in crops including cotton, cereals, potatoes and vegetables.

<span class="mw-page-title-main">Clothianidin</span> Chemical compound

Clothianidin is an insecticide developed by Takeda Chemical Industries and Bayer AG. Similar to thiamethoxam and imidacloprid, it is a neonicotinoid. Neonicotinoids are a class of insecticides that are chemically similar to nicotine, which has been used as a pesticide since the late 1700s. Clothianidin and other neonicotinoids act on the central nervous system of insects as an agonist of nAChR, the same receptor as acetylcholine, the neurotransmitter that stimulates and activating post-synaptic acetylcholine receptors but not inhibiting AChE. Clothianidin and other neonicotinoids were developed to last longer than nicotine, which is more toxic and which breaks down too quickly in the environment.

<span class="mw-page-title-main">Cyfluthrin</span> Chemical compound

Cyfluthrin is a pyrethroid insecticide and common household pesticide. It is a complex organic compound and the commercial product is sold as a mixture of isomers. Like most pyrethroids, it is highly toxic to fish and invertebrates, but it is far less toxic to humans. It is generally supplied as a 10–25% liquid concentrate for commercial use and is diluted prior to spraying onto agricultural crops and outbuildings.

<i>Tuta absoluta</i> Pest worm of tomato, potato, and others

Tuta absoluta or Phthorimaea absoluta is a species of moth in family Gelechiidae known by the common names South American tomato pinworm, tomato leafminer, tomato pinworm and South American tomato moth. It is well known as a serious pest of tomato crops in Europe, Africa, western Asia and South and Central America, with larvae causing up to 100% loss if not effectively controlled.

<span class="mw-page-title-main">Thiamethoxam</span> Chemical compound

Thiamethoxam is the ISO common name for a mixture of cis-trans isomers used as a systemic insecticide of the neonicotinoid class. It has a broad spectrum of activity against many types of insects and can be used as a seed dressing.

<span class="mw-page-title-main">Tefluthrin</span> Synthetic pyrethroid used as insecticide

Tefluthrin is the ISO common name for an organic compound that is used as a pesticide. It is a pyrethroid, a class of synthetic insecticides that mimic the structure and properties of the naturally occurring insecticide pyrethrin which is present in the flowers of Chrysanthemum cinerariifolium. Pyrethroids such as tefluthrin are often preferred as active ingredients in agricultural insecticides because they are more cost-effective and longer acting than natural pyrethrins. It is effective against soil pests because it can move as a vapour without irreversibly binding to soil particles: in this respect it differs from most other pyrethroids.

Ryanoids are a class of insecticides which share the same mechanism of action as the alkaloid ryanodine. Ryanodine is a naturally occurring insecticide isolated from Ryania speciosa.

<span class="mw-page-title-main">Sulfoxaflor</span> Chemical compound

Sulfoxaflor, also marketed as Isoclast, is a systemic insecticide that acts as an insect neurotoxin. A pyridine and a trifluoromethyl compound, it is a member of a class of chemicals called sulfoximines, which act on the central nervous system of insects.

The Insecticide Resistance Action Committee (IRAC) was formed in 1984 and works as a specialist technical group of the industry association CropLife to be able to provide a coordinated industry response to prevent or delay the development of insecticide resistance in insect and mite pests. IRAC strives to facilitate communication and education on insecticide and traits resistance as well as to promote the development and facilitate the implementation of insecticide resistance management strategies.

<span class="mw-page-title-main">Broflanilide</span> Chemical compound

Broflanilide is a complex, polycyclic, organohalogen insecticide which provides a novel mode of action (MoA).

<span class="mw-page-title-main">Flupyradifurone</span> Chemical compound

Flupyradifurone is a systemic butenolide insecticide developed by Bayer CropScience under the name Sivanto. Flupyradifurone protects crops from sap-feeding pests such as aphids and is safer for non-target organisms compared to other insecticides. Sivanto was launched in 2014 since it obtained its first commercial registration in central America. Insecticide Resistance Action Committee (IRAC) classified Flupyradifurone as 4D subset (butenolide) and it is the first pesticide in the butenolide category. It was approved by European Union in 2015.

References

  1. IRAC International MoA Working Group (March 2020). "IRAC Mode of Action Classification Scheme Version 9.4". Insecticide Resistance Action Committee.
  2. "Australia to approve DuPont's Exirel insecticide cyantraniliprole". AgroNews. Oct 10, 2013.
  3. Tiwari S, Stelinski LL (Sep 2013). "Effects of cyantraniliprole, a novel anthranilic diamide insecticide, against Asian citrus psyllid under laboratory and field conditions". Pest Manag Sci. 69 (9): 1066–1072. doi:10.1002/ps.3468.
  4. "ICAMA Registration Expert Review Statistics Released - H2 of 2012". 12 December 2012.
  5. Legal Victory: Court Orders EPA to Protect Endangered Wildlife From Toxic Pesticide