Deltamethrin

Last updated
Deltamethrin
Decamethrin-2D-skeletal.png
Deltamethrin-from-xtal-3D-bs-17.png
Deltamethrin-from-xtal-3D-sf.png
Names
Preferred IUPAC name
(S)-Cyano(3-phenoxyphenyl)methyl (1R,3R)-3-(2,2-dibromoethen-1-yl)-2,2-dimethylcyclopropane-1-carboxylate
Other names
  • Decamethrin
  • Decis
  • Delta dust
  • DeltaGard
Identifiers
3D model (JSmol)
6746312
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.052.943 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 258-256-6
KEGG
PubChem CID
RTECS number
  • GZ1233000
UNII
UN number 3349
  • InChI=1S/C22H19Br2NO3/c1-22(2)17(12-19(23)24)20(22)21(26)28-18(13-25)14-7-6-10-16(11-14)27-15-8-4-3-5-9-15/h3-12,17-18,20H,1-2H3/t17-,18+,20-/m0/s1 Yes check.svgY
    Key: OWZREIFADZCYQD-NSHGMRRFSA-N Yes check.svgY
  • InChI=1/C22H19Br2NO3/c1-22(2)17(12-19(23)24)20(22)21(26)28-18(13-25)14-7-6-10-16(11-14)27-15-8-4-3-5-9-15/h3-12,17-18,20H,1-2H3/t17-,18+,20-/m0/s1
    Key: OWZREIFADZCYQD-NSHGMRRFBN
  • N#C[C@H](c1cccc(c1)Oc1ccccc1)OC(=O)[C@@H]1[C@@H](C1(C)C)C=C(Br)Br
Properties
C22H19Br2NO3
Molar mass 505.206 g·mol−1
Density 1.5 g cm−3
Melting point 98 °C (208 °F; 371 K)
Boiling point 300 °C (572 °F; 573 K)
Pharmacology
P03BA03 ( WHO ) QP53AC11 ( WHO )
Hazards
GHS labelling:
GHS-pictogram-skull.svg GHS-pictogram-pollu.svg
Danger
H301, H331, H410
P261, P264, P270, P271, P273, P301+P310, P304+P340, P311, P321, P330, P391, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Deltamethrin is a pyrethroid ester insecticide. Deltamethrin plays a key role in controlling malaria vectors, and is used in the manufacture of long-lasting insecticidal mosquito nets; however, resistance of mosquitos and bed bugs to deltamethrin has seen a widespread increase.

Contents

Deltamethrin is toxic to aquatic life, particularly fish. Although generally considered safe to use around humans, it is still neurotoxic. It is an allergen and causes asthma in some people.

Usage

Deltamethrin is a highly effective insecticide. It is used, among other applications, for the production of long-lasting insecticidal nets (LLINs), which, along with indoor residual spraying (IRS), are the main vector control strategies recommended by the World Health Organization (WHO) for the management of malaria. [1]

Deltamethrin plays a key role in controlling malaria vectors, and is used in the manufacture of long-lasting insecticidal mosquito nets. It is used as one of a battery of pyrethroid insecticides in control of malarial vectors, particularly Anopheles gambiae , and whilst being the most employed pyrethroid insecticide, can be used in conjunction with, or as an alternative to, permethrin, cypermethrin and organophosphate-based insecticides, such as malathion and fenthion. Resistance to deltamethrin (and its counterparts) is now extremely widespread and threatens the success of worldwide vector control programmes.

Production

Deltamethrin is a pyrethroid composed of a single stereoisomer, of a possible 8 stereoisomers, selectively prepared by the esterification of (1R,3R)- or cis-2,2-dimethyl-3-(2,2-dibromovinyl)cyclopropanecarboxylic acid with (alpha,S)- or (+)-alpha-cyano-3-phenoxybenzyl alcohol or by selective recrystallization of the racemic esters obtained by esterification of the (1R,3R)- or cis-acid with the racemic or (alpha-R, alpha-S, or alpha-R/S)- or + or alcohol.

Resistance

Resistance has been identified in several insects, including important vectors of malaria like the mosquito Anopheles gambiae as well as non-disease carrying pests like bed bugs.

Mosquitoes

Methods of resistance include thickening of the cuticle of the insect to limit permeation of the insecticide, metabolic resistance via overexpression of metabolizing cytochrome P450 mono-oxygenases and glutathione-S-transferases, and the knockdown resistance (kdr) sodium channel mutations which render the action of insecticides ineffectual, even when co-administered with piperonyl butoxide. Characterization of the different forms of resistance among mosquitoes has become a top priority in groups studying tropical medicine due to the high mortality of those who reside in endemic areas. [2]

Bed bugs

Two mutations, the valine to leucine mutation (V419L) and the leucine to isoleucine mutation (L925I) in voltage-gated sodium channel α-subunit gene, have been identified as responsible for knockdown resistance to deltamethrin in bed bugs. One study found that 88% of bed bug populations in the US had at least one of the two mutations, if not both, meaning that deltamethrin resistance among bed bugs is currently making this insecticide obsolete. [3]

Side effects

Deltamethrin belongs to a group of pesticides called synthetic pyrethroids. This pesticide is toxic to aquatic life, particularly fish, and therefore must be used with extreme caution around water.

In humans

Although generally considered safe to use around humans, it is still neurotoxic. Pyrethroids like Deltamethrin can be allergens and cause asthma in some people. [4]

Deltamethrin temporarily attacks the nervous system of any animal with which it comes into contact. Skin contact can lead to tingling or reddening of the skin local to the application. If taken in through the eyes or mouth, the most common symptom is facial paraesthesia, which can feel like many different abnormal sensations, including burning, partial numbness, "pins and needles", skin crawling, etc. There is one case report describing chronic intoxication from pyrethroid insecticides leading to a syndrome clinically similar to motor neuron disease. [5] There are no antidotes, and treatment must be symptomatic, as approved by a physician. Over time, deltamethrin is metabolized, with a rapid loss of toxicity, and passed from the body. A poison control center should be contacted in the event of an accidental poisoning.

Deltamethrin is able to pass from a woman's skin through her blood and into her breast milk, although breastfeeding remains safe under prevailing conditions. In South Africa, residues of deltamethrin were found in breast milk, together with DDT, in an area that used DDT treatment for malaria control, as well as pyrethroids in small-scale agriculture. [6]

A 2015 study conducted in Brittany, France, found a negative correlation between deltamethrin exposure (measured through the presence of a metabolite in urine) and cognitive scores in infants. [7]

In domestic animals

Cases of toxicity have been observed in cattle, following use of agricultural deltamethrin preparation in external application for tick control.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">DDT</span> Organochloride known for its insecticidal properties

Dichlorodiphenyltrichloroethane, commonly known as DDT, is a colorless, tasteless, and almost odorless crystalline chemical compound, an organochloride. Originally developed as an insecticide, it became infamous for its environmental impacts. DDT was first synthesized in 1874 by the Austrian chemist Othmar Zeidler. DDT's insecticidal action was discovered by the Swiss chemist Paul Hermann Müller in 1939. DDT was used in the second half of World War II to limit the spread of the insect-borne diseases malaria and typhus among civilians and troops. Müller was awarded the Nobel Prize in Physiology or Medicine in 1948 "for his discovery of the high efficiency of DDT as a contact poison against several arthropods". The WHO's anti-malaria campaign of the 1950s and 1960s relied heavily on DDT and the results were promising, though there was a resurgence in developing countries afterwards.

<span class="mw-page-title-main">Insecticide</span> Pesticide used against insects

Insecticides are pesticides used to kill insects. They include ovicides and larvicides used against insect eggs and larvae, respectively. The major use of insecticides is in agriculture, but they are also used in home and garden settings, industrial buildings, for vector control, and control of insect parasites of animals and humans.

<span class="mw-page-title-main">Pesticide resistance</span> Decreased effectiveness of a pesticide on a pest

Pesticide resistance describes the decreased susceptibility of a pest population to a pesticide that was previously effective at controlling the pest. Pest species evolve pesticide resistance via natural selection: the most resistant specimens survive and pass on their acquired heritable changes traits to their offspring. If a pest has resistance then that will reduce the pesticide's efficacy – efficacy and resistance are inversely related.

<span class="mw-page-title-main">Piperonyl butoxide</span> Chemical compound

Piperonyl butoxide (PBO) is a pale yellow to light brown liquid organic compound used as an adjuvant component of pesticide formulations for synergy. That is, despite having no pesticidal activity of its own, it enhances the potency of certain pesticides such as carbamates, pyrethrins, pyrethroids, and rotenone. It is a semisynthetic derivative of safrole and is produced from the condensation of the sodium salt of 2-(2-butoxyethoxy) ethanol and the chloromethyl derivative of hydrogenated safrole (dihydrosafrole); or through 1,2-Methylenedioxybenzene.

<span class="mw-page-title-main">Bifenthrin</span> Chemical compound

Bifenthrin is a pyrethroid insecticide. It is widely used against ant infestations.

<i>Anopheles</i> Genus of mosquito

Anopheles is a genus of mosquito first described by the German entomologist J. W. Meigen in 1818, and are known as nail mosquitoes and marsh mosquitoes. Many such mosquitoes are vectors of the parasite Plasmodium, a genus of protozoans that cause malaria in birds, reptiles, and mammals, including humans. The Anopheles gambiae mosquito is the best-known species of marsh mosquito that transmits the Plasmodium falciparum, which is a malarial parasite deadly to human beings; no other mosquito genus is a vector of human malaria.

<span class="mw-page-title-main">Pyrethroid</span> Class of insecticides

A pyrethroid is an organic compound similar to the natural pyrethrins, which are produced by the flowers of pyrethrums. Pyrethroids are used as commercial and household insecticides.

<span class="mw-page-title-main">Permethrin</span> Medication and insecticide

Permethrin is a medication and an insecticide. As a medication, it is used to treat scabies and lice. It is applied to the skin as a cream or lotion. As an insecticide, it can be sprayed onto outer clothing or mosquito nets to kill the insects that touch them.

<span class="mw-page-title-main">Mosquito net</span> Fine net used to exclude mosquitos and other biting insects

A mosquito net is a type of meshed curtain that is circumferentially draped over a bed or a sleeping area to offer the sleeper barrier protection against bites and stings from mosquitos, flies, and other pest insects, and thus against the diseases they may carry. Examples of such preventable insect-borne diseases include malaria, dengue fever, yellow fever, zika virus, Chagas disease, and various forms of encephalitis, including the West Nile virus.

Icaridin, also known as picaridin, is an insect repellent which can be used directly on skin or clothing. It has broad efficacy against various arthropods such as mosquitos, ticks, gnats, flies and fleas, and is almost colorless and odorless. A study performed in 2010 showed that picaridin spray and cream at the 20% concentration provided 12 hours of protection against ticks. Unlike DEET, icaridin does not dissolve plastics, synthetics or sealants, is odorless and non-greasy and presents a lower risk of toxicity when used with sunscreen, as it may reduce skin absorption of both compounds.

<i>Anopheles gambiae</i> Species of mosquito

The Anopheles gambiae complex consists of at least seven morphologically indistinguishable species of mosquitoes in the genus Anopheles. The complex was recognised in the 1960s and includes the most important vectors of malaria in sub-Saharan Africa, particularly of the most dangerous malaria parasite, Plasmodium falciparum. It is one of the most efficient malaria vectors known. The An. gambiae mosquito additionally transmits Wuchereria bancrofti which causes lymphatic filariasis, a symptom of which is elephantiasis.

<span class="mw-page-title-main">Cyhalothrin</span> Synthetic pyrethroid used as insecticide

Cyhalothrin is an organic compound that, in specific isomeric forms, is used as a pesticide. It is a pyrethroid, a class of synthetic insecticides that mimic the structure and properties of the naturally occurring insecticide pyrethrin which is present in the flowers of Chrysanthemum cinerariifolium. Pyrethroids, such as cyhalothrin, are often preferred as an active ingredient in agricultural insecticides because they are more cost-effective and longer acting than natural pyrethrins. λ-and γ-cyhalothrin are now used to control insects and spider mites in crops including cotton, cereals, potatoes and vegetables.

<span class="mw-page-title-main">Indoor residual spraying</span> Process of spraying insecticides inside residences to prevent malaria

Indoor residual spraying or IRS is the process of spraying the inside of dwellings with an insecticide to kill mosquitoes that spread malaria. A dilute solution of insecticide is sprayed on the inside walls of certain types of dwellings—those with walls made from porous materials such as mud or wood but not plaster as in city dwellings. Mosquitoes are killed or repelled by the spray, preventing the transmission of the disease. In 2008, 44 countries employed IRS as a malaria control strategy. Several pesticides have historically been used for IRS, the first and most well-known being DDT.

<span class="mw-page-title-main">Bed bug control techniques</span> Methods to prevent bed bug infestations

Bed bugs, or Cimicidae, are small parasitic insects. The term usually refers to species that prefer to feed on human blood.

Knockdown resistance, also called kdr, describes cases of resistance to diphenylethane and pyrethroid insecticides in insects and other arthropods that result from reduced sensitivity of the nervous system caused by point mutations in the insect population's genetic makeup. Such mutative resistance is characterized by the presence of kdr alleles in the insect's genome. Knockdown resistance, first identified and characterized in the house fly in the 1950s, remains a threat to the continued usefulness of pyrethroids in the control of many pest species. Research since 1990 has provided a wealth of new information on the molecular basis of knockdown resistance.

<span class="mw-page-title-main">Attractive toxic sugar baits</span> Experimental oral insecticide for mosquitos

Attractive toxic sugar baits (ATSBs) are oral insecticides designed to reduce malaria infections by killing the host vector – the mosquito – rather than the parasite itself.

<span class="mw-page-title-main">Janet Hemingway</span> British infectious diseases specialist

Janet Hemingway is a British infectious diseases specialist. She is the former director of the Liverpool School of Tropical Medicine (LSTM) and founding director of the Infection Innovation Consortium and Professor of Tropical Medicine at LSTM. She is currently the president of the Royal Society of Tropical Medicine and Hygiene.

<span class="mw-page-title-main">Flaminia Catteruccia</span> Italian professor of immunology and infectious disease

Flaminia Catteruccia is an Italian professor of immunology and infectious disease at the Harvard T.H. Chan School of Public Health, studying the interactions between malaria and the Anopheles mosquitoes that transmit the parasites.

<i>Anopheles funestus</i> Species of insect

Anopheles funestus is a species of mosquito in the Culicidae family. This species was first described in 1900 by Giles. The female is attracted to houses where it seeks out humans in order to feed on their blood, mostly during the night. This mosquito is a major vector of malaria in sub-Saharan Africa.

Abdoulaye Diabaté is an African parasitologist, Professor and Head of the Medical Entomology and Parasitology Department at the Health Sciences Research Institute. His research considers the use of gene drive to eliminate malaria, and he leads Target Malaria Burkina Faso. He delivered the first genetically modified mosquitoes in Africa, marking a historic moment for science. He was awarded the 2023 Falling Walls Science Prize for Science and Innovation Management. In April 2024, he spoke at the TED 2024: The Brave and The Brilliant conference in Vancouver.

References

  1. World Health Organization (30 January 2016). "5.5 Resistance to insecticides". World Malaria Report 2015. World Health Organization. p. 48. ISBN   978-92-4-156515-8.
  2. Müller, Pie; Warr, Emma; Stevenson, Bradley J.; Pignatelli, Patricia M.; Morgan, John C.; Steven, Andrew; Yawson, Alexander E.; Mitchell, Sara N.; Ranson, Hilary; Hemingway, Janet; Paine, Mark J. I.; Donnelly, Martin J. (2008). "Field-Caught Permethrin-Resistant Anopheles gambiae Overexpress CYP6P3, a P450 That Metabolises Pyrethroids". PLOS Genetics. 4 (11): e1000286. doi: 10.1371/journal.pgen.1000286 . PMC   2583951 . PMID   19043575.
  3. Zhu, F.; Wigginton, J.; Romero, A.; Moore, A.; Ferguson, K.; Palli, R.; Potter, M. F.; Haynes, K. F.; Palli, S. R. (2010). "Widespread distribution of knockdown resistance mutations in the bed bug,Cimex lectularius(Hemiptera: Cimicidae), populations in the United States". Archives of Insect Biochemistry and Physiology. 73 (4): 245–57. doi: 10.1002/arch.20355 . PMID   20301216.
  4. "Cockroach Control". Archived from the original on August 12, 2017. Retrieved August 10, 2016.
  5. Doi, H.; Kikuchi, H.; Murai, H.; Kawano, Y.; Shigeto, H.; Ohyagi, Y.; Kira, J. (2006). "Motor neuron disorder simulating ALS induced by chronic inhalation of pyrethroid insecticides". Neurology. 67 (10): 1894–5. doi:10.1212/01.wnl.0000244489.65670.9f. PMID   17130437. S2CID   29920559.
  6. Bouwman, Sereda B.; Meinhardt, H.M. (December 2006). "Simultaneous presence of DDT and pyrethroid residues in human breast milk from a malaria endemic area in South Africa". Environmental Pollution. 144 (3): 902–917. Bibcode:2006EPoll.144..902B. doi:10.1016/j.envpol.2006.02.002. PMID   16564119.
  7. Viel, Jean-François; Warembourg, Charline; Le Maner-Idriss, Gaïd; Lacroix, Agnès; Limond, Gwendolina; Rouget, Florence; Monfort, Christine; Durand, Gaël; Cordier, Sylvaine; Chevrier, Cécile (2015). "Pyrethroid insecticide exposure and cognitive developmental disabilities in children: The PELAGIE mother–child cohort" (PDF). Environment International. 82 (September 2015): 69–75. Bibcode:2015EnInt..82...69V. doi:10.1016/j.envint.2015.05.009. PMID   26057254.