Tebufenozide

Last updated
Tebufenozide
Tebufenozide.svg
Names
Preferred IUPAC name
N-tert-Butyl-N′-(4-ethylbenzoyl)-3,5-dimethylbenzohydrazide
Other names
Mimic, RH-75992, HOE-105540, Confirm 2F, Confirm 70
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.101.212 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C22H28N2O2/c1-7-17-8-10-18(11-9-17)20(25)23-24(22(4,5)6)21(26)19-13-15(2)12-16(3)14-19/h8-14H,7H2,1-6H3,(H,23,25)
    Key: QYPNKSZPJQQLRK-UHFFFAOYSA-N
  • InChI=1/C22H28N2O2/c1-7-17-8-10-18(11-9-17)20(25)23-24(22(4,5)6)21(26)19-13-15(2)12-16(3)14-19/h8-14H,7H2,1-6H3,(H,23,25)
    Key: QYPNKSZPJQQLRK-UHFFFAOYAS
  • O=C(c1cc(cc(c1)C)C)N(NC(=O)c2ccc(cc2)CC)C(C)(C)C
Properties
C22H28N2O2
Molar mass 352.478 g·mol−1
Melting point 191 to 191.5 °C (375.8 to 376.7 °F; 464.1 to 464.6 K) [1]
0.83 mg/L [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Tebufenozide is an insecticide that acts as a molting hormone. It is an agonist of the ecdysone receptor that causes premature molting in larvae. It is primarily used against caterpillar pests. [2] It belongs to the class of bisacylhydrazines. [3]

Contents

Because it has high selectivity for the targeted pests and low toxicity otherwise, the company that discovered tebufenozide, Rohm and Haas, was given a Presidential Green Chemistry Award for its development. [2]

Its environmental half-life varies according to where it is released and under what conditions, but can be said to be on the order of months. [4]

It has been used for "an insect growth regulator, to control leaf-eating insects that cause damage or death in trees. Tebufenozide is the active ingredient in" Bayer's MIMIC "formulation, which controls forest defoliator pests such as gypsy moths, tent caterpillars, budworms, tussock moths and cabbage looper. These are all pests of the order Lepidoptera." [5]

It has been used against the sugarcane borer, although the population grows immunity. [6]

In California, the substance was used chiefly for crops of head lettuce, celery, raspberries, cauliflower, and tomatoes for processing.

A 1994 study conducted by the Canadian Forest Service in laboratory conditions concluded that the substance was very stable in acidic and neutral buffers at 20 °C, hydrolytic degradation was dependent on pH and temperature, sunlight photodegradation was observed at a slower rate than ultraviolet photodegradation, and that microbial metabolism and photolysis are the two main degradative routes for tebufenozide in natural aquatic systems. [7]

The final degradation products of tebufenozide are various alcohols, carboxylic acids and ketones of low toxicity. [8]

Derivatives

Furan tebufenozide

In 2010, laboratory tests and field tests were performed on furan tebufenozide. The results were on the order of one hundred days. [9]

Related Research Articles

<span class="mw-page-title-main">Insecticide</span> Pesticide used against insects

Insecticides are pesticides used to kill insects. They include ovicides and larvicides used against insect eggs and larvae, respectively. Acaricides, which kill mites and ticks, are not strictly insecticides, but are usually classified together with insecticides. The major use of Insecticides is agriculture, but they are also used in home and garden, industrial buildings, vector control and control of insect parasites of animals and humans. Insecticides are claimed to be a major factor behind the increase in the 20th-century's agricultural productivity. Nearly all insecticides have the potential to significantly alter ecosystems; many are toxic to humans and/or animals; some become concentrated as they spread along the food chain.

<span class="mw-page-title-main">Biological pest control</span> Controlling pests using other organisms

Biological control or biocontrol is a method of controlling pests, whether pest animals such as insects and mites, weeds, or pathogens affecting animals or plants by using other organisms. It relies on predation, parasitism, herbivory, or other natural mechanisms, but typically also involves an active human management role. It can be an important component of integrated pest management (IPM) programs.

<span class="mw-page-title-main">Azadirachtin</span> Chemical compound

Azadirachtin, a chemical compound belonging to the limonoid group, is a secondary metabolite present in neem seeds. It is a highly oxidized tetranortriterpenoid which boasts a plethora of oxygen-bearing functional groups, including an enol ether, acetal, hemiacetal, tetra-substituted epoxide and a variety of carboxylic esters.

<span class="mw-page-title-main">Ecdysone</span> Precursor of an insect hormone

Ecdysone is a prohormone of the major insect molting hormone 20-hydroxyecdysone, secreted from the prothoracic glands. It is of steroidal structure. Insect molting hormones are generally called ecdysteroids. Ecdysteroids act as moulting hormones of arthropods but also occur in other related phyla where they can play different roles. In Drosophila melanogaster, an increase in ecdysone concentration induces the expression of genes coding for proteins that the larva requires. It causes chromosome puffs to form in polytene chromosomes. Recent findings in the laboratory of Chris Q. Doe have found a novel role of this hormone in regulating temporal gene transitions within neural stem cells of the fruit fly.

<span class="mw-page-title-main">Neem oil</span> Vegetable oil from the Indian neem tree

Neem oil, also known as margosa oil, is a vegetable oil pressed from the fruits and seeds of the neem, a tree which is indigenous to the Indian subcontinent and has been introduced to many other areas in the tropics. It is the most important of the commercially available products of neem, and its chemical properties have found widespread use as a pesticide in organic farming.

<span class="mw-page-title-main">Fenthion</span> Chemical compound

Fenthion is an organothiophosphate insecticide, avicide, and acaricide. Like most other organophosphates, its mode of action is via cholinesterase inhibition. Due to its relatively low toxicity towards humans and mammals, fenthion is listed as moderately toxic compound in U.S. Environmental Protection Agency and World Health Organization toxicity class.

<span class="mw-page-title-main">Fenoxycarb</span> Chemical compound

Fenoxycarb is a carbamate insect growth regulator. It has a low toxicity for bees, birds, and humans, but is toxic to fish. The oral LD50 for rats is greater than 16,800 milligrams per kilogram (0.269 oz/lb).

<span class="mw-page-title-main">Spinosad</span> Medication

Spinosad is an insecticide based on chemical compounds found in the bacterial species Saccharopolyspora spinosa. The genus Saccharopolyspora was discovered in 1985 in isolates from crushed sugarcane. The bacteria produce yellowish-pink aerial hyphae, with bead-like chains of spores enclosed in a characteristic hairy sheath. This genus is defined as aerobic, Gram-positive, nonacid-fast actinomycetes with fragmenting substrate mycelium. S. spinosa was isolated from soil collected inside a nonoperational sugar mill rum still in the Virgin Islands. Spinosad is a mixture of chemical compounds in the spinosyn family that has a generalized structure consisting of a unique tetracyclic ring system attached to an amino sugar (D-forosamine) and a neutral sugar (tri-Ο-methyl-L-rhamnose). Spinosad is relatively nonpolar and not easily dissolved in water.

<span class="mw-page-title-main">Ecdysone receptor</span>

The ecdysone receptor is a nuclear receptor found in arthropods, where it controls development and contributes to other processes such as reproduction. The receptor is a non-covalent heterodimer of two proteins, the EcR protein and ultraspiracle protein (USP). It binds to and is activated by ecdysteroids. Insect ecdysone receptors are currently better characterized than those from other arthropods, and mimics of ecdysteroids are used commercially as caterpillar-selective insecticides.

<span class="mw-page-title-main">Southwestern corn borer</span> Species of moth

The southwestern corn borer, Diatraea grandiosella, is a moth belonging to the sub-order Heterocera. Like most moths, The southwestern corn borer undergoes complete metamorphosis developing as an egg, larva (caterpillar), pupa and adult. It is capable of entering diapause in its larva stage and under the conditions of a precise photoperiod. Growth and development are regulated by juvenile hormones. The southwestern corn borer has an extensive range. It occurs in Mexico and in Alabama, Arizona, Arkansas, Colorado, Illinois, Indiana, Kansas, Kentucky, Louisiana, Mississippi, Missouri, Nebraska, New Mexico, Oklahoma, Tennessee, and Texas.

<span class="mw-page-title-main">Emamectin</span> Chemical compound

Emamectin is the 4″-deoxy-4″-methylamino derivative of abamectin, a 16-membered macrocyclic lactone produced by the fermentation of the soil actinomycete Streptomyces avermitilis. It is generally prepared as the salt with benzoic acid, emamectin benzoate, which is a white or faintly yellow powder. Emamectin is widely used in the US and Canada as an insecticide because of its chloride channel activation properties.

An insect growth regulator (IGR) is a substance (chemical) that inhibits the life cycle of an insect. IGRs are typically used as insecticides to control populations of harmful insect pests such as cockroaches and fleas.

<span class="mw-page-title-main">Diflubenzuron</span> Chemical compound

Diflubenzuron is an insecticide of the benzoylurea class. It is used in forest management and on field crops to selectively control insect pests, particularly forest tent caterpillar moths, boll weevils, gypsy moths, and other types of moths. It is a widely used larvicide in India for control of mosquito larvae by public health authorities. Diflubenzuron is approved by the WHO Pesticide Evaluation Scheme.

Lymantria dispar multicapsid nuclear polyhedrosis virus or LdMNPV is a viral infection in spongy moths that causes infected larvae to die and disintegrate. Infected larvae climb to the top of a tree and die. The larvae then melt or disintegrate, falling onto the foliage below, where they infect more larvae.

<i>Ostrinia furnacalis</i> Species of moth

Ostrinia furnacalis is a species of moth in the family Crambidae, the grass moths. It was described by Achille Guenée in 1854 and is known by the common name Asian corn borer since this species is found in Asia and feeds mainly on corn crop. The moth is found from China to Australia, including in Java, Sulawesi, the Philippines, Borneo, New Guinea, the Solomon Islands, and Micronesia. The Asian corn borer is part of the species complex, Ostrinia, in which members are difficult to distinguish based on appearance. Other Ostrinia such as O. orientalis, O. scapulalis, O. zealis, and O. zaguliaevi can occur with O. furnacalis, and the taxa can be hard to tell apart.

Chilo infuscatellus, the yellow top borer or sugarcane shoot borer, is a moth in the family Crambidae. It was described by the Dutch entomologist Samuel Constantinus Snellen van Vollenhoven in 1890. It is found in India, Myanmar, Tajikistan, Afghanistan, Korea, Taiwan, Malaysia, the Philippines and on Java and Timor.

Trichogramma japonicum is a minute wasp parasitoid from the Trichogrammatidae family in the order Hymenoptera. T. japonicum parasitizes the eggs of many pest species, especially Lepidoptera found in many monocultures. They are entomophagous parasitoids that deposit their eggs inside the host species' egg, consuming the host egg material and emerging from the egg once development is complete. T. japonicum can be found naturally in rice ecosystems, but are dispersed commercially to many monocultures as a biological control. The mitochondrial genomes of T. japonicum are significantly rearranged when comparing it to related insects.

<span class="mw-page-title-main">Dibenzoylhydrazine</span> Chemical compound

Dibenzoylhydrazine (DBH) is a synthetic chemical compound with the chemical formulation C14H12N2O2.

<span class="mw-page-title-main">K. Kunhikannan</span> Agricultural entomologist

K. Kunhikannan was a pioneer agricultural entomologist and the first Indian to serve as an entomologist in the state of Mysore. Aside from entomology related publications, he wrote two books The West (1927) and A Civilisation at Bay. He was a friend and admirer of the humanist Brajendra Nath Seal and the British writer Lionel Curtis who sought a single united world government. As an agricultural entomologist, he identified several low-cost techniques to pest management and was a pioneer of classical biological control approaches in India.

<span class="mw-page-title-main">Nereistoxin</span> Chemical compound

Nereistoxin is a natural product identified in 1962 as the toxic organic compound N,N-dimethyl-1,2-dithiolan-4-amine. It had first been isolated in 1934 from the marine annelid Lumbriconereis heteropoda and acts by blocking the nicotinic acetylcholine receptor. Researchers at Takeda in Japan investigated it as a possible insecticide. They subsequently developed a number of derivatives that were commercialised, including those with the ISO common names bensultap, cartap, thiocyclam and thiosultap.

References

  1. 1 2 Tebufenozide, Food and Agriculture Organization of the United Nations
  2. 1 2 Carlson, Glenn R. (2000). "Tebufenozide: A Novel Caterpillar Control Agent with Unusually High Target Selectivity". Green Chemical Syntheses and Processes. ACS Symposium Series. Vol. 767. pp. 8–17. doi:10.1021/bk-2000-0767.ch002. ISBN   978-0-8412-3678-3.
  3. Dhadialla, Tarlochan S.; Carlson, Glenn R.; Le, Dat P. (1998). "New Insecticides with Ecdysteroidal and Juvenile Hormone Activity". Annual Review of Entomology. 43: 545–569. doi:10.1146/annurev.ento.43.1.545. PMID   9444757.
  4. pubchem: "Tebufenozide"
  5. "Controlling forest insects with Mimic®", 2017-07-26
  6. Reay-Jones, F.P.F.; Akbar, W.; McAllister, C. D.; Reagan, T. E.; Ottea, J. A. (2005). "Reduced Susceptibility to Tebufenozide in Populations of the Sugarcane Borer (Lepidoptera: Crambidae) in Louisiana". Journal of Economic Entomology. 98 (3): 955–960. doi:10.1603/0022-0493-98.3.955. PMID   16022328.
  7. Sundaram, K. M. S. (1994). "Degradation kinetics of tebufenozide in model aquatic systems under controlled laboratory conditions". Journal of Environmental Science and Health, Part B. 29 (6): 1081–1104. Bibcode:1994JESHB..29.1081S. doi:10.1080/03601239409372917.
  8. Roberts TR et al, "Metabolic Pathways of Agrochemicals: Part 2: Insecticides and Fungicides", p820 (Royal Society of Chemistry, 2007)
  9. Guo, Cong; Li, Dahui; Chen, Jinhui; Guo, Baoyuan; Wang, Huili; Li, Jianzhong (2010). "Degradation of furan tebufenozide in laboratory and field trials". Science China Chemistry. 53 (8): 1818–1824. doi:10.1007/s11426-010-3168-z. S2CID   46596278.