Fenitrothion

Last updated
Fenitrothion
Phenitrothion.svg
Fenitrothion-Molecule-3D-balls-by-AHRLS-2013.png
Names
Preferred IUPAC name
O,O-Dimethyl O-(3-methyl-4-nitrophenyl) phosphorothioate
Other names
• Dimethoxy-(3-methyl-4-nitrophenoxy)thioxophosphorane
O,O-Dimethyl O-4-nitro-m-tolyl phosphorothioate
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.004.114 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C9H12NO5PS/c1-7-6-8(4-5-9(7)10(11)12)15-16(17,13-2)14-3/h4-6H,1-3H3 Yes check.svgY
    Key: ZNOLGFHPUIJIMJ-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C9H12NO5PS/c1-7-6-8(4-5-9(7)10(11)12)15-16(17,13-2)14-3/h4-6H,1-3H3
    Key: ZNOLGFHPUIJIMJ-UHFFFAOYAZ
  • S=P(Oc1cc(c(cc1)[N+]([O-])=O)C)(OC)OC
Properties
C9H12NO5PS
Molar mass 277.23 g·mol−1
AppearanceYellow-brown liquid
Density 1.3227 g/cm3
Melting point 3.4 °C (38.1 °F; 276.5 K)
Boiling point 118 °C (244 °F; 391 K) at 0.05 mmHg
38.0 mg/L
Solubility Readily soluble in dichloromethane, 2-propanol, toluene, hardly soluble in n-hexane. [1]
log P 3.30 (octanol/water) [2]
Hazards
Lethal dose or concentration (LD, LC):
Rat, oral: 500 mg/kg [3]

Mouse (female), oral: 1416 mg/kg [4]

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Fenitrothion (IUPAC name: O,O-dimethyl O-(3-methyl-4-nitrophenyl) phosphorothioate) is a phosphorothioate (organophosphate) insecticide that is inexpensive and widely used worldwide. Trade names include Sumithion, a 94.2% solution of fenitrothion. [5]

Contents

Health effects

Fenitrothion at sublethal doses affected the motor movement of marsupials, [6] and at acute dose levels it reduced the energy of birds. [7]

In chronic (low) dose tests, unexpectedly only the lowest concentration (0.011 microgram/liter) of fenitrothion depressed the growth of an algae, though all of the chronic dose levels used were toxic in other ways to the algae. [8]

Just half of fenitrothion's minimally effective dose altered the thyroid structure of a freshwater murrel (the snakehead fish). [9]

Cases of non-specific encephalopathy and fatty visceral changes (Reye's syndrome) in children living in the vicinity of fenitrothion-spraying operations invoked the research described latterly in Science , [10] and originally in The Lancet : [11]

2-day-old mice were dosed topically for 11 days with fenitrothion, amongst other substances. After a further 2 days a sublethal dose of encephalomyocarditis virus was injected subcutaneously in known titre. Mortality-rates in the 10-day period after virus injection 4-9% in fenitrothion groups, and 0% in corn-oil controls. Fatty changes were noted in liver and kidney in the insecticide-virus groups. The encephalopathy showed no specific central-nervous system lesion, but death followed a sequence of paralysis and convulsions. The possible role of exposure to combinations of insecticides in human viral susceptibility requires further attention.

Further study showed that the illness was caused not by fenitrothion itself, but combinations which included the surfactants and the solvent (with or without the pesticide) clearly showed that pretreatment with these chemicals markedly increased the viral lethality in the test mice. [12]

Resistance

In an unusual demonstration of resistance to pesticides, 8% of insects in farm fields were found to carry a symbiotic gut microbe that can metabolize and detoxify fenitrothion; after in-vitro tests showed that the microbe significantly increased the survival of fenitrothion-treated insects. [13]

Related Research Articles

<span class="mw-page-title-main">Insecticide</span> Pesticide used against insects

Insecticides are pesticides used to kill insects. They include ovicides and larvicides used against insect eggs and larvae, respectively. Acaricides, which kill mites and ticks, are not strictly insecticides, but are usually classified together with insecticides. The major use of Insecticides is agriculture, but they are also used in home and garden, industrial buildings, vector control and control of insect parasites of animals and humans. Insecticides are distinct from repellents, which repel but do not kill.

<span class="mw-page-title-main">Cypermethrin</span> Chemical compound

Cypermethrin (CP) is a synthetic pyrethroid used as an insecticide in large-scale commercial agricultural applications as well as in consumer products for domestic purposes. It behaves as a fast-acting neurotoxin in insects. It is easily degraded on soil and plants but can be effective for weeks when applied to indoor inert surfaces. It is a non-systemic and non-volatile insecticide that acts by contact and ingestion, used in agriculture and in pest control products. Exposure to sunlight, water and oxygen will accelerate its decomposition. Cypermethrin is highly toxic to fish, bees and aquatic insects, according to the National Pesticides Telecommunications Network (NPTN). It is found in many household ant and cockroach killers, including Raid, Ortho, Combat, ant chalk, and some products of Baygon in Southeast Asia.

<span class="mw-page-title-main">Chlorfenvinphos</span> Chemical compound

Chlorfenvinphos is an organophosphorus compound that was widely used as an insecticide and an acaricide. The molecule itself can be described as an enol ester derived from dichloroacetophenone and diethylphosphonic acid. Chlorfenvinphos has been included in many products since its first use in 1963. However, because of its toxic effect as a cholinesterase inhibitor it has been banned in several countries, including the United States and the European Union. Its use in the United States was discontinued in 1991.

<span class="mw-page-title-main">Chlorpyrifos</span> Chemical compound

Chlorpyrifos (CPS), also known as chlorpyrifos ethyl, is an organophosphate pesticide that has been used on crops, and animals in buildings, and in other settings, to kill several pests, including insects and worms. It acts on the nervous systems of insects by inhibiting the acetylcholinesterase enzyme. Chlorpyrifos was patented in 1966 by Dow Chemical Company.

<span class="mw-page-title-main">Organophosphate</span> Organic compounds with the structure O=P(OR)3

In organic chemistry, organophosphates are a class of organophosphorus compounds with the general structure O=P(OR)3, a central phosphate molecule with alkyl or aromatic substituents. They can be considered as esters of phosphoric acid. Organophosphates are best known for their use as pesticides.

<span class="mw-page-title-main">Diazinon</span> Chemical compound

Diazinon, a colorless to dark brown liquid, is a thiophosphoric acid ester developed in 1952 by Ciba-Geigy, a Swiss chemical company. It is a nonsystemic organophosphate insecticide formerly used to control cockroaches, silverfish, ants, and fleas in residential, non-food buildings. Diazinon was heavily used during the 1970s and early 1980s for general-purpose gardening use and indoor pest control. A bait form was used to control scavenger wasps in the western U.S. Diazinon is used in flea collars for domestic pets in Australia and New Zealand. Diazinon is a major component in the "Golden Fleece" brand sheep dip. Residential uses of diazinon were outlawed in the U.S. in 2004 because of human health risks but it is still approved for agricultural uses. An emergency antidote is atropine.

Demeton-S-methyl is an organic compound with the molecular formula C6H15O3PS2. It was used as an organothiophosphate acaricide and organothiophosphate insecticide. It is flammable. With prolonged storage, Demeton-S-methyl becomes more toxic due to formation of a sulfonium derivative which has greater affinity to the human form of the acetylcholinesterase enzyme, and this may present a hazard in agricultural use.

<span class="mw-page-title-main">Organothiophosphate</span> Class of chemical compounds

Organothiophosphates or organophosphorothioates are a subclass of organophosphorus compounds and of thiophosphate compounds. They are the organic compounds that contain a phosphate group in which one or more oxygen atoms is substituted by sulfur. Many are used as pesticides, some have medical applications, and some are used as oil additives. They generally have the chemical formula (RO)3PS, [(RO)2P(S)O], R(RO)2PS, etc.

John Mark Purdey was an English organic farmer who came to public attention in the 1980s, when he began to circulate his own theories regarding the causes of bovine spongiform encephalopathy.

<span class="mw-page-title-main">Organophosphate poisoning</span> Toxic effect of pesticides

Organophosphate poisoning is poisoning due to organophosphates (OPs). Organophosphates are used as insecticides, medications, and nerve agents. Symptoms include increased saliva and tear production, diarrhea, vomiting, small pupils, sweating, muscle tremors, and confusion. While onset of symptoms is often within minutes to hours, some symptoms can take weeks to appear. Symptoms can last for days to weeks.

<span class="mw-page-title-main">Environmental toxicology</span> Multidisciplinary field of science

Environmental toxicology is a multidisciplinary field of science concerned with the study of the harmful effects of various chemical, biological and physical agents on living organisms. Ecotoxicology is a subdiscipline of environmental toxicology concerned with studying the harmful effects of toxicants at the population and ecosystem levels.

<span class="mw-page-title-main">Chlorethoxyfos</span> Chemical compound

Chlorethoxyfos is an organophosphate acetylcholinesterase inhibitor used as an insecticide. It is registered for the control of corn rootworms, wireworms, cutworms, seed corn maggot, white grubs and symphylans on corn. The insecticide is sold under the trade name Fortress by E.I. du Pont de Nemours & Company.

<span class="mw-page-title-main">Acetamiprid</span> Chemical compound

Acetamiprid is an organic compound with the chemical formula C10H11ClN4. It is an odorless neonicotinoid insecticide produced under the trade names Assail, and Chipco by Aventis CropSciences. It is systemic and intended to control sucking insects (Thysanoptera, Hemiptera, mainly aphids) on crops such as leafy vegetables, citrus fruits, pome fruits, grapes, cotton, cole crops, and ornamental plants. It is also a key pesticide in commercial cherry farming due to its effectiveness against the larvae of the cherry fruit fly.

<span class="mw-page-title-main">Naled</span> Organophosphate insecticide

Naled (Dibrom) is an organophosphate insecticide. Its chemical name is dimethyl 1,2-dibromo-2,2-dichloroethylphosphate.

<span class="mw-page-title-main">Thiamethoxam</span> Chemical compound

Thiamethoxam is the ISO common name for a mixture of cis-trans isomers used as a systemic insecticide of the neonicotinoid class. It has a broad spectrum of activity against many types of insects and can be used as a seed dressing.

<span class="mw-page-title-main">Tetraethyl pyrophosphate</span> Chemical compound

Tetraethyl pyrophosphate, abbreviated TEPP, is an organophosphate compound with the formula [(C2H5O)2P(O)]2O. It is the tetraethyl derivative of pyrophosphate (P2O74-). It is a colorless oil that solidifies near room temperature. It is used as an insecticide. The compound hydrolyzes rapidly.

<span class="mw-page-title-main">Terbufos</span> Chemical compound

Terbufos is a chemical compound used in insecticides and nematicides. It is part of the chemical family of organophosphates. It is a clear, colourless to pale yellow or reddish-brown liquid and sold commercially as granulate.

<span class="mw-page-title-main">Triamiphos</span> Chemical compound

Triamiphos (chemical formula: C12H19N6OP) is an organophosphate used as a pesticide and fungicide. It is used to control powdery mildews on apples and ornamentals. It was discontinued by the US manufacturer in 1998.

<span class="mw-page-title-main">Fenpropathrin</span> Chemical compound

Fenpropathrin, or fenopropathrin, is a widely used pyrethroid insecticide in agriculture and household. Fenpropathrin is an ingestion and contact synthetic pyrethroid. Its mode of action is similar to other natural (pyrethrum) and synthetic pyrethroids where in they interfere with the kinetics of voltage gated sodium channels causing paralysis and death of the pest. Fenpropathrin was the first of the light-stable synthetic pyrethroids to be synthesized in 1971, but it was not commercialized until 1980. Like other pyrethroids with an α-cyano group, fenpropathrin also belongs to the termed type II pyrethroids. Type II pyrethroids are a more potent toxicant than type I in depolarizing insect nerves. Application rates of fenpropathrin in agriculture according to US environmental protection agency (EPA) varies by crop but is not to exceed 0.4 lb ai/acre.

References

  1. Farm Chemicals Handbook. Willoughby, OH: Meister Publishing Co. 1999. p. 177. ISBN   978-1-892829-02-3. OCLC   50201739.
  2. Hansch C, Leo A, Hoekman D (1995). Exploring QSAR - Hydrophobic, Electronic, and Steric Constants. Washington, DC: American Chemical Society. p. 60. ISBN   978-0-8412-2993-8. OCLC   924843801.
  3. Eckroth D, Grayson M, Kirk RE, Othmer DF (1981). Kirk-Othmer Encyclopedia of Chemical Technology. Vol. 3 (3rd ed.). New York, NY: John Wiley and Sons. p. 440. ISBN   978-0-471-02066-0. OCLC   873939596.
  4. Sekizawa J, Eto M, Miyamoto J, Matsuo M (1992). Environ Health Criteria 133: Fenitrothion (Report). Geneva: World Health Organization. p. 70.
  5. "Fenitrothion". PubChem Compound Database. National Center for Biotechnology Information.
  6. Buttemer WA, Story PG, Fildes KJ, Baudinette RV, Astheimer LB (July 2008). "Fenitrothion, an organophosphate, affects running endurance but not aerobic capacity in fat-tailed dunnarts (Sminthopsis crassicaudata)". Chemosphere. 72 (9): 1315–20. Bibcode:2008Chmsp..72.1315B. doi:10.1016/j.chemosphere.2008.04.054. PMID   18547601.
  7. Kitulagodage M, Isanhart J, Buttemer WA, Hooper MJ, Astheimer LB (April 2011). "Fipronil toxicity in northern bobwhite quail Colinus virginianus: reduced feeding behaviour and sulfone metabolite formation". Chemosphere. 83 (4): 524–30. Bibcode:2011Chmsp..83..524K. doi:10.1016/j.chemosphere.2010.12.057. PMID   21227481.
  8. Ferrando MD, Sancho E, Andreu-Moliner E (November 1996). "Chronic toxicity of fenitrothion to an algae (Nannochloris oculata), a rotifer (Brachionus calyciflorus), and the cladoceran (Daphnia magna)". Ecotoxicology and Environmental Safety. 35 (2): 112–20. Bibcode:1996EcoES..35..112F. doi:10.1006/eesa.1996.0090. PMID   8950533.
  9. Saxena PK, Mani K (1988). "Effect of safe concentrations of some pesticides on thyroid in the freshwater murrel, Channa punctatus: a histopathological study". Environmental Pollution. 55 (2): 97–105. doi:10.1016/0269-7491(88)90121-2. PMID   15092506.
  10. Crocker JF, Ozere RL, Safe SH, Digout SC, Rozee KR, Hutzinger O (June 1976). "Lethal interaction of ubiquitous insecticide carriers with virus". Science. 192 (4246): 1351–3. Bibcode:1976Sci...192.1351C. doi:10.1126/science.179146. PMID   179146.
  11. Crocker JF, Rozee KR, Ozere RL, Digout SC, Hutzinger O (July 1974). "Insecticide and viral interaction as a cause of fatty visceral changes and encephalopathy in the mouse". Lancet. 2 (7871): 22–4. doi:10.1016/S0140-6736(74)91351-8. PMID   4134409.
  12. Safe S, Plugge H, Crocker JF (1977). "Analysis of an aromatic solvent used in a forest spray program". Chemosphere. 6 (10): 641–651. Bibcode:1977Chmsp...6..641S. doi:10.1016/0045-6535(77)90075-3.
  13. Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T (May 2012). "Symbiont-mediated insecticide resistance". Proceedings of the National Academy of Sciences of the United States of America. 109 (22): 8618–22. Bibcode:2012PNAS..109.8618K. doi: 10.1073/pnas.1200231109 . PMC   3365206 . PMID   22529384.

Further reading