Names | |
---|---|
Preferred IUPAC name Dodecachlorooctahydro-1H-1,3,4-(epimethanetriyl)cyclobuta[cd]pentalene | |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
ChemSpider | |
ECHA InfoCard | 100.017.452 |
EC Number |
|
KEGG | |
MeSH | D008917 |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C10Cl12 | |
Molar mass | 545.55 g/mol |
Melting point | 485 °C (905 °F; 758 K) |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Mirex is an organochloride that was commercialized as an insecticide and later banned because of its impact on the environment. This white crystalline odorless solid is a derivative of cyclopentadiene. It was popularized to control fire ants but by virtue of its chemical robustness and lipophilicity it was recognized as a bioaccumulative pollutant. The spread of the red imported fire ant was encouraged by the use of mirex, which also kills native ants that are highly competitive with the fire ants. The United States Environmental Protection Agency prohibited its use in 1976. [1] It is prohibited by the Stockholm Convention on Persistent Organic Pollutants.
Mirex was first synthesized in 1946, [2] but was not used in pesticide formulations until 1955. Mirex was produced by the dimerization of hexachlorocyclopentadiene in the presence of aluminium chloride.
Mirex is a stomach insecticide, meaning that it must be ingested by the organism in order to poison it. The insecticidal use was focused on Southeastern United States to control the imported fire ants Solenopsis saevissima richteri and Solenopsis invicta. Approximately 250,000 kg of mirex was applied to fields between 1962 and 1975 (US NRC, 1978). Most of the mirex was in the form of "4X mirex bait", which consists of 0.3% mirex in 14.7% soybean oil mixed with 85% corncob grits. Application of the 4X bait was designed to give a coverage of 4.2 g mirex/ha and was delivered by aircraft, helicopter or tractor. 1x and 2x bait were also used. Use of mirex as a pesticide was banned in 1978. The Stockholm Convention banned production and use of several persistent organic pollutant, and mirex is one of the "dirty dozen". [3]
Characteristic of chlorocarbons, mirex does not burn easily; combustion products are expected to include carbon dioxide, carbon monoxide, hydrogen chloride, chlorine, phosgene, and other organochlorine species. Slow oxidation produces chlordecone ("Kepone"), a related insecticide that is also banned in most of the western world, but more readily degraded. Sunlight degrades mirex primarily to photomirex (8-monohydromirex) and later partly to 2,8-dihydromirex. [1] [4] [5]
Mirex is highly resistant to microbiological degradation. It only slowly dechlorinates to a monohydro derivative by anaerobic microbial action in sewage sludge and by enteric bacteria. Degradation by soil microorganisms has not been described.
Mirex is highly cumulative and amount depends upon the concentration and duration of exposure. There is evidence of accumulation of mirex in aquatic and terrestrial food chains to harmful levels. After 6 applications of mirex bait at 1.4 kg/ha, high mirex levels were found in some species; turtle fat contained 24.8 mg mirex/kg, kingfishers, 1.9 mg/kg, coyote fat, 6 mg/kg, opossum fat, 9.5 mg/kg, and racoon fat, 73.9 mg/kg. In a model ecosystem with a terrestrial-aquatic interface, sorghum seedlings were treated with mirex at 1.1 kg/ha. Caterpillars fed on these seedlings and their faeces contaminated the water which contained algae, snails, Daphnia, mosquito larvae, and fish. After 33 days, the ecological magnification value was 219 for fish and 1165 for snails.
Although general environmental levels are low, it is widespread in the biotic and abiotic environment. Being lipophilic, mirex is strongly adsorbed on sediments.
Mirex is only moderately toxic in single-dose animal studies (oral LD50 values range from 365–3000 mg/kg body weight). [6] It can enter the body via inhalation, ingestion, and via the skin. The most sensitive effects of repeated exposure in animals are principally associated with the liver, and these effects have been observed with doses as low as 1.0 mg/kg diet (0.05 mg/kg body weight per day), the lowest dose tested. At higher dose levels, it is fetotoxic (25 mg/kg in diet) and teratogenic (6.0 mg/kg per day). Mirex was not generally active in short-term tests for genetic activity. There is sufficient evidence of its carcinogenicity in mice and rats.[ citation needed ] Delayed onset of toxic effects and mortality is typical of mirex poisoning.[ citation needed ] Mirex is toxic for a range of aquatic organisms, with crustacea being particularly sensitive.
Mirex induces pervasive chronic physiological and biochemical disorders in various vertebrates. No acceptable daily intake (ADI) for mirex has been advised by FAO/WHO. IARC (1979) evaluated mirex's carcinogenic hazard and concluded that "there is sufficient evidence for its carcinogenicity to mice and rats. In the absence of adequate data in humans, based on above result it can be said, that it has carcinogenic risk to humans". Data on human health effects do not exist [ citation needed ].
Per a 1995 ATSDR report mirex caused fatty changes in the livers, hyperexcitability and convulsion, and inhibition of reproduction in animals. It is a potent endocrine disruptor, interfering with estrogen-mediated functions such as ovulation, pregnancy, and endometrial growth. It also induced liver cancer by interaction with estrogen in female rodents. [7]
Chlordecone, better known in the United States under the brand name Kepone, is an organochlorine compound and a colourless solid. It is an obsolete insecticide, now prohibited in the western world, but only after many thousands of tonnes had been produced and used. Chlordecone is a known persistent organic pollutant (POP) that was banned globally by the Stockholm Convention on Persistent Organic Pollutants in 2009.
Bifenthrin is a pyrethroid insecticide. It is widely used against ant infestations.
Parathion, also called parathion-ethyl or diethyl parathion and locally known as "Folidol", is an organophosphate insecticide and acaricide. It was originally developed by IG Farben in the 1940s. It is highly toxic to non-target organisms, including humans, so its use has been banned or restricted in most countries. The basic structure is shared by parathion methyl.
Dicofol is an insecticide, an organochlorine that is chemically related to DDT. Dicofol is a miticide that is very effective against spider mite. Its production and use is banned internationally under the Stockholm Convention.
Chlorfenvinphos is an organophosphorus compound that was widely used as an insecticide and an acaricide. The molecule itself can be described as an enol ester derived from dichloroacetophenone and diethylphosphonic acid. Chlorfenvinphos has been included in many products since its first use in 1963. However, because of its toxic effect as a cholinesterase inhibitor it has been banned in several countries, including the United States and the European Union. Its use in the United States was cancelled in 1991.
Pentachlorophenol (PCP) is an organochlorine compound used as a pesticide and a disinfectant. First produced in the 1930s, it is marketed under many trade names. It can be found as pure PCP, or as the sodium salt of PCP, the latter of which dissolves easily in water. It can be biodegraded by some bacteria, including Sphingobium chlorophenolicum.
Persistent organic pollutants (POPs) are organic compounds that are resistant to degradation through chemical, biological, and photolytic processes. They are toxic chemicals that adversely affect human health and the environment around the world. Because they can be transported by wind and water, most POPs generated in one country can and do affect people and wildlife far from where they are used and released.
Dieldrin is an organochlorine compound originally produced in 1948 by J. Hyman & Co, Denver, as an insecticide. Dieldrin is closely related to aldrin, which reacts further to form dieldrin. Aldrin is not toxic to insects; it is oxidized in the insect to form dieldrin which is the active compound. Both dieldrin and aldrin are named after the Diels-Alder reaction which is used to form aldrin from a mixture of norbornadiene and hexachlorocyclopentadiene.
Fipronil is a broad-spectrum insecticide that belongs to the phenylpyrazole chemical family. Fipronil disrupts the insect central nervous system by blocking the ligand-gated ion channel of the GABAA receptor and glutamate-gated chloride (GluCl) channels. This causes hyperexcitation of contaminated insects' nerves and muscles. Fipronil's specificity towards insects is believed to be due to its greater binding affinity for the GABAA receptors of insects than to those of mammals, and for its action on GluCl channels, which do not exist in mammals. As of 2017, there does not appear to be significant resistance among fleas to fipronil.
Toxaphene was an insecticide used primarily for cotton in the southern United States during the late 1960s and the 1970s. Toxaphene is a mixture of over 670 different chemicals and is produced by reacting chlorine gas with camphene. It can be most commonly found as a yellow to amber waxy solid.
Heptachlor is an organochlorine compound that was used as an insecticide. Usually sold as a white or tan powder, heptachlor is one of the cyclodiene insecticides. In 1962, Rachel Carson's Silent Spring questioned the safety of heptachlor and other chlorinated insecticides. Due to its highly stable structure, heptachlor can persist in the environment for decades. In the United States, the Environmental Protection Agency has limited the sale of heptachlor products to the specific application of fire ant control in underground transformers. The amount that can be present in different foods is regulated.
Aldrin is an organochlorine insecticide that was widely used until the 1990s, when it was banned in most countries. Aldrin is a member of the so-called "classic organochlorines" (COC) group of pesticides. COCs enjoyed a very sharp rise in popularity during and after World War II. Other noteworthy examples of COCs include dieldrin and DDT. After research showed that organochlorines can be highly toxic to the ecosystem through bioaccumulation, most were banned from use. Before the ban, it was heavily used as a pesticide to treat seed and soil. Aldrin and related "cyclodiene" pesticides became notorious as persistent organic pollutants.
Endrin is an organochlorine compound with the chemical formula C12H8Cl6O that was first produced in 1950 by Shell and Velsicol Chemical Corporation. It was primarily used as an insecticide, as well as a rodenticide and piscicide. It is a colourless, odorless solid, although commercial samples are often off-white. Endrin was manufactured as an emulsifiable solution known commercially as Endrex. The compound became infamous as a persistent organic pollutant and for this reason it is banned in many countries.
Methoxychlor is a synthetic organochloride insecticide, now obsolete. Tradenames for methoxychlor include Chemform, Maralate, Methoxo, Methoxcide, Metox, and Moxie.
Hydramethylnon is an organofluorine compound. It is also known as AC 217,300. It is in a chemical class called trifluoromethyl aminohydrazone, which is a metabolic inhibitor. It is classified as a pesticide designed to control insects that are harmful to humans. It works by inhibiting complex III in the mitochondrial inner membrane and leads to a halting of oxidative phosphorylation. It is used primarily as an insecticide in the form of baits for cockroaches and ants. Some brands of insecticides that include hydramethylnon are Amdro, Blatex, Combat, Cyaforce, Cyclon, Faslane, Grant's, Impact, Matox, Maxforce, Pyramdron, Siege, Scuttle and Wipeout. Hydramethylnon is a slow-acting poison with delayed toxicity that needs to be eaten to be effective.
Chlorethoxyfos is an organophosphate acetylcholinesterase inhibitor used as an insecticide. It is registered for the control of corn rootworms, wireworms, cutworms, seed corn maggot, white grubs and symphylans on corn. The insecticide is sold under the trade name Fortress by E.I. du Pont de Nemours & Company.
Hexachlorocyclopentadiene (HCCPD), also known as C-56, Graphlox, and HRS 1655, is an organochlorine compound with the formula C5Cl6. It is a precursor to pesticides, flame retardants, and dyes. It is a colourless liquid, although commercial samples appear lemon-yellow liquid sometimes with a bluish vapour. Many of its derivatives proved to be highly controversial, as studies showed them to be persistent organic pollutants. An estimated 270,000 tons were produced until 1976, and smaller amounts continue to be produced today. Two prominent manufacturers are Velsicol Chemical Corporation in the US and by Jiangsu Anpon Electrochemicals Co. in China.
Demeton, sold as an amber oily liquid with a sulphur like odour under the name Systox, is an organophosphate derivative causing irritability and shortness of breath to individuals repeatedly exposed. It was used as a phosphorothioate insecticide and acaricide and has the chemical formula C8H19O3PS2. Although it was previously used as an insecticide, it is now largely obsolete due to its relatively high toxicity to humans. Demeton consists of two components, demeton-S and demeton-O in a ratio of approximately 2:1 respectively. The chemical structure of demeton is closely related to military nerve agents such as VX and a derivative with one of the ethoxy groups replaced by methyl was investigated by both the US and Soviet chemical-weapons programs under the names V.sub.X and GD-7.
Dimethyl tetrachloroterephthalate (DCPA, with the main trade name Dacthal) is an organic compound with the formula C6Cl4(CO2CH3)2. It is the dimethyl ester of tetrachloroterephthalic acid, used as a preemergent herbicide with the ISO common name chlorthal-dimethyl. It kills annual grasses and many common weeds without killing sensitive plants such as turf grasses, flowers, fruits, vegetables, and cotton.
Carbophenothion also known as Stauffer R 1303 as for the manufacturer, Stauffer Chemical, is an organophosphorus chemical compound. It was used as a pesticide for citrus fruits under the name of Trithion. Carbophenothion was used as an insecticide and acaricide. Although not used anymore it is still a restricted use pesticide in the United States. The chemical is identified in the US as an extremely hazardous substance according to the Emergency Planning and Community Right-to-Know Act.