Cubane

Last updated
Cubane
Structural formula of cubane Cuban.svg
Structural formula of cubane
Ball-and-stick model of cubane Cubane molecule ball.png
Ball-and-stick model of cubane
Names
Preferred IUPAC name
Cubane [1]
Systematic IUPAC name
Pentacyclo[4.2.0.02,5.03,8.04,7]octane
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
PubChem CID
UNII
  • InChI=1S/C8H8/c1-2-5-3(1)7-4(1)6(2)8(5)7/h1-8H Yes check.svgY
    Key: TXWRERCHRDBNLG-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C8H8/c1-2-5-3(1)7-4(1)6(2)8(5)7/h1-8H
    Key: TXWRERCHRDBNLG-UHFFFAOYAL
  • C12C3C4C1C5C2C3C45
Properties
C8H8
Molar mass 104.15 g/mol
AppearanceTransparent [2] crystalline solid
Density 1.29 g/cm3
Melting point 133.5 °C (272.3 °F; 406.6 K) [3]
Boiling point 161.6 °C (322.9 °F; 434.8 K) [3]
Related compounds
Related hydrocarbons
Cuneane
Dodecahedrane
Tetrahedrane
Prismane
Prismane C8
Related compounds
Octafluorocubane
Octanitrocubane
Octaazacubane
Octasilacubane
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Cubane is a synthetic hydrocarbon compound with the formula C8H8. It consists of eight carbon atoms arranged at the corners of a cube, with one hydrogen atom attached to each carbon atom. A solid crystalline substance, cubane is one of the Platonic hydrocarbons and a member of the prismanes. It was first synthesized in 1964 by Philip Eaton and Thomas Cole. [4] Before this work, Eaton believed that cubane would be impossible to synthesize due to the "required 90 degree bond angles". [5] [6] The cubic shape requires the carbon atoms to adopt an unusually sharp 90° bonding angle, which would be highly strained as compared to the 109.45° angle of a tetrahedral carbon. Once formed, cubane is quite kinetically stable, due to a lack of readily available decomposition paths. It is the simplest hydrocarbon with octahedral symmetry.

Contents

Having high potential energy and kinetic stability makes cubane and its derivative compounds useful for controlled energy storage. For example, octanitrocubane and heptanitrocubane have been studied as high-performance explosives. These compounds also typically have a very high density for hydrocarbon molecules. The resulting high energy density means a large amount of energy can be stored in a comparably smaller amount of space, an important consideration for applications in fuel storage and energy transport. Furthermore, their geometry and stability make them suitable isosteres for benzene rings. [7]

Synthesis

The classic 1964 synthesis starts with the conversion of 2-cyclopentenone to 2-bromocyclopentadienone: [4] [8]

Cyclopentenone to 2-bromocyclopentadienone.png

Allylic bromination with N-bromosuccinimide in carbon tetrachloride followed by addition of molecular bromine to the alkene gives a 2,3,4-tribromocyclopentanone. Treating this compound with diethylamine in diethyl ether causes elimination of two equivalents of hydrogen bromide to give the diene product.

Eaton's 1964 synthesis of cubane CubaneSynthesis.png
Eaton's 1964 synthesis of cubane

The construction of the eight-carbon cubane framework begins when 2-bromocyclopentadienone undergoes a spontaneous Diels-Alder dimerization. One ketal of the endo isomer is subsequently selectively deprotected with aqueous hydrochloric acid to 3.

In the next step, the endo isomer 3 (with both alkene groups in close proximity) forms the cage-like isomer 4 in a photochemical [2+2] cycloaddition. The bromoketone group is converted to ring-contracted carboxylic acid 5 in a Favorskii rearrangement with potassium hydroxide. Next, the thermal decarboxylation takes place through the acid chloride (with thionyl chloride) and the tert-butyl perester 6 (with tert-butyl hydroperoxide and pyridine) to 7; afterward, the acetal is once more removed in 8. A second Favorskii rearrangement gives 9, and finally another decarboxylation gives, via 10, cubane (11).

A more approachable laboratory synthesis of disubstituted cubane involves bromination of the ethylene ketal of cyclopentanone to give a tribromocyclopentanone derivative. Subsequent steps involve dehydrobromination, Diels-Alder dimerization, etc. [9] [10]

Alternative synthesis of a disubstituted cubane Cuban4.svg
Alternative synthesis of a disubstituted cubane

The resulting cubane-1,4-dicarboxylic acid is used to synthesize other substituted cubanes. Cubane itself can be obtained nearly quantitatively by photochemical decarboxylation of the thiohydroxamate ester (the Barton decarboxylation). [11]

Derivatives

The synthesis of the octaphenyl derivative from tetraphenylcyclobutadiene nickel bromide by Freedman in 1962 pre-dates that of the parent compound. It is a sparingly soluble colourless compound that melts at 425–427 °C. [3] [12] [13] [14] A hypercubane, with a hypercube-like structure, was predicted to exist in a 2014 publication. [15] [16] Two isomers of cubene have been synthesized, and a third analyzed computationally. The alkene in ortho-cubene is exceptionally reactive due to its pyramidalized geometry. At the time of its synthesis, this was the most pyramidalized alkene to have been made. [17] The meta-cubene isomer is even less stable, and the para-cubene isomer probably only exists as a diradical rather than an actual diagonal bond. [18]

In 2022, both heptafluorocubane and octafluorocubane were synthesized. [19] Octafluorocubane is of theoretical interest because of its unusual electronic structure, [20] which is indicated by its susceptibility to undergo reduction to a detectable anion C
8
F
8
, with a free electron trapped inside the cube, in effect making it the world's smallest box. [21]

Cubylcubanes and oligocubanes

Cubene (1,2-dehydrocubane) and 1,4-cubanediyl(1,4-dehydrocubane) are enormously strained compounds which both undergo nucleophilic addition very rapidly, and this has enabled chemists to synthesize cubylcubane. X-ray diffraction structure solution has shown that the central cubylcubane bond is exceedingly short (1.458 Å), much shorter than the typical C-C single bond (1.578 Å). This is attributed to the fact that the exocyclic orbitals of cubane are s-rich and close to the nucleus. [22] Chemists at the University of Chicago extended and modified the sequence in a way that permits the preparation of a host of [n]cubylcubane oligomers. [23] The [n]cubylcubanes are rigid molecular rods with the particular promise at the time of making liquid crystals with exceptional UV transparency. As the number of linked cubane units increases, the solubility of [n]cubylcubane plunges; as a result, only limited chain length (up to 40 units) have been synthesized in solutions. The skeleton of [n]cubylcubanes is still composed of enormously strained carbon cubes, which therefore limit its stability. In contrast, researchers at Penn State University showed that poly-cubane synthesized by solid-state reaction is 100% sp3 carbon bonded with a tetrahedral angle (109.5°) and exhibits exceptional optical properties (high refractive index). [24]

Reactions

Cuneane may be produced from cubane by a metal-ion-catalyzed σ-bond rearrangement. [25] [26]

Cuban zu Cunean.svg

With a rhodium catalyst, it first forms syn-tricyclooctadiene, which can thermally decompose to cyclooctatetraene at 50–60 °C. [27]

Cubane to cyclooctatetraene.svg

See also

Related Research Articles

<span class="mw-page-title-main">Alkene</span> Hydrocarbon compound containing one or more C=C bonds

In organic chemistry, an alkene, or olefin, is a hydrocarbon containing a carbon–carbon double bond. The double bond may be internal or in the terminal position. Terminal alkenes are also known as α-olefins.

<span class="mw-page-title-main">Philip Eaton</span> American chemist (1936–2023)

Philip E. Eaton was an American chemist. He served as Professor Emeritus of Chemistry at the University of Chicago. Eaton and his fellow researchers were the first to synthesize the "impossible" cubane molecule in 1964.

<span class="mw-page-title-main">Tetrahedrane</span> Hypothetical organic molecule with a tetrahedral structure

Tetrahedrane is a hypothetical platonic hydrocarbon with chemical formula C4H4 and a tetrahedral structure. The molecule would be subject to considerable angle strain and has not been synthesized as of 2023. However, a number of derivatives have been prepared. In a more general sense, the term tetrahedranes is used to describe a class of molecules and ions with related structure, e.g. white phosphorus.

Cyclobutane is a cycloalkane and organic compound with the formula (CH2)4. Cyclobutane is a colourless gas and is commercially available as a liquefied gas. Derivatives of cyclobutane are called cyclobutanes. Cyclobutane itself is of no commercial or biological significance, but more complex derivatives are important in biology and biotechnology.

Dodecahedrane is a chemical compound, a hydrocarbon with formula C20H20, whose carbon atoms are arranged as the vertices (corners) of a regular dodecahedron. Each carbon is bound to three neighbouring carbon atoms and to a hydrogen atom. This compound is one of the three possible Platonic hydrocarbons, the other two being cubane and tetrahedrane.

<span class="mw-page-title-main">Organoboron chemistry</span> Study of compounds containing a boron-carbon bond

Organoboron chemistry or organoborane chemistry studies organoboron compounds, also called organoboranes. These chemical compounds combine boron and carbon; typically, they are organic derivatives of borane (BH3), as in the trialkyl boranes.

<span class="mw-page-title-main">Prismane</span> Chemical compound

Prismane or 'Ladenburg benzene' is a polycyclic hydrocarbon with the formula C6H6. It is an isomer of benzene, specifically a valence isomer. Prismane is far less stable than benzene. The carbon (and hydrogen) atoms of the prismane molecule are arranged in the shape of a six-atom triangular prism—this compound is the parent and simplest member of the prismanes class of molecules. Albert Ladenburg proposed this structure for the compound now known as benzene. The compound was not synthesized until 1973.

(<i>E</i>)-Stilbene Chemical compound

(E)-Stilbene, commonly known as trans-stilbene, is an organic compound represented by the condensed structural formula C6H5CH=CHC6H5. Classified as a diarylethene, it features a central ethylene moiety with one phenyl group substituent on each end of the carbon–carbon double bond. It has an (E) stereochemistry, meaning that the phenyl groups are located on opposite sides of the double bond, the opposite of its geometric isomer, cis-stilbene. Trans-stilbene occurs as a white crystalline solid at room temperature and is highly soluble in organic solvents. It can be converted to cis-stilbene photochemically, and further reacted to produce phenanthrene.

<span class="mw-page-title-main">Cycloheptene</span> Chemical compound

Cycloheptene is a 7-membered cycloalkene with a flash point of −6.7 °C. It is a raw material in organic chemistry and a monomer in polymer synthesis. Cycloheptene can exist as either the cis- or the trans-isomer.

Pyramidal alkenes are alkenes in which the two carbon atoms making up the double bond are not coplanar with their four substituents. This deformation results from geometric constraints. Pyramidal alkenes only are of interest because much can be learned from them about the nature of chemical bonding.

<span class="mw-page-title-main">Gauche effect</span> Molecular-structural phenomenon

In the study of conformational isomerism, the gauche effect is an atypical situation where a gauche conformation is more stable than the anti conformation (180°).

<span class="mw-page-title-main">Schwartz's reagent</span> Chemical compound

Schwartz's reagent is the common name for the organozirconium compound with the formula (C5H5)2ZrHCl, sometimes called zirconocene hydrochloride or zirconocene chloride hydride, and is named after Jeffrey Schwartz, a chemistry professor at Princeton University. This metallocene is used in organic synthesis for various transformations of alkenes and alkynes.

Barrelene is a bicyclic organic compound with chemical formula C8H8 and systematic name bicyclo[2.2.2]octa-2,5,7-triene. First synthesized and described by Howard Zimmerman in 1960, the name derives from the resemblance to a barrel, with the staves being three ethylene units attached to two methine groups. It is the formal Diels–Alder adduct of benzene and acetylene. Due to its unusual molecular geometry, the compound is of considerable interest to theoretical chemists.

In organic chemistry, propellane is any member of a class of polycyclic hydrocarbons, whose carbon skeleton consists of three rings of carbon atoms sharing a common carbon–carbon covalent bond. The concept was introduced in 1966 by D. Ginsburg Propellanes with small cycles are highly strained and unstable, and are easily turned into polymers with interesting structures, such as staffanes. Partly for these reasons, they have been the object of much research.

In organic chemistry, a homologation reaction, also known as homologization, is any chemical reaction that converts the reactant into the next member of the homologous series. A homologous series is a group of compounds that differ by a constant unit, generally a methylene group. The reactants undergo a homologation when the number of a repeated structural unit in the molecules is increased. The most common homologation reactions increase the number of methylene units in saturated chain within the molecule. For example, the reaction of aldehydes or ketones with diazomethane or methoxymethylenetriphenylphosphine to give the next homologue in the series.

<i>trans</i>-Cyclooctene Chemical compound

trans-Cyclooctene is a cyclic hydrocarbon with the formula [–(CH2)6CH=CH–], where the two C–C single bonds adjacent to the double bond are on opposite sides of the latter's plane. It is a colorless liquid with a disagreeable odor.

<span class="mw-page-title-main">Hooker reaction</span> Chemical reaction

In the Hooker reaction (1936) an alkyl chain in a certain naphthoquinone is reduced by one methylene unit as carbon dioxide in each potassium permanganate oxidation.

<span class="mw-page-title-main">Basketane</span> Chemical compound

Basketane is a polycyclic alkane with the chemical formula C10H12. The name is taken from its structural similarity to a basket shape. Basketane was first synthesized in 1966, independently by Masamune and Dauben and Whalen. A patent application published in 1988 used basketane, which is a hydrocarbon, as a source material in doping thin diamond layers because of the molecule's high vapor pressure, carbon ring structure, and fewer hydrogen-to-carbon bond ratio.

<span class="mw-page-title-main">2.2.2-Propellane</span> Chemical compound

[2.2.2]Propellane, formally tricyclo[2.2.2.01,4]octane is an organic compound, a member of the propellane family. It is a hydrocarbon with formula C8H12, or C2(C2H4)3. Its molecule has three rings with four carbon atoms each, sharing one C–C bond.

In organic chemistry, enone–alkene cycloadditions are a version of the [2+2] cycloaddition. This reaction involves an enone and alkene as substrates. Although the concerted photochemical [2+2] cycloaddition is allowed, the reaction between enones and alkenes is stepwise and involves discrete diradical intermediates.

References

  1. Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 169. doi:10.1039/9781849733069-FP001. ISBN   978-0-85404-182-4. The retained names adamantane and cubane are used in general nomenclature and as preferred IUPAC names.
  2. "Start".
  3. 1 2 3 Biegasiewicz, Kyle; Griffiths, Justin; Savage, G. Paul; Tsanakstidis, John; Priefer, Ronny (2015). "Cubane: 50 years later". Chemical Reviews. 115 (14): 6719–6745. doi:10.1021/cr500523x. PMID   26102302.
  4. 1 2 Eaton, Philip E.; Cole, Thomas W. (1964). "Cubane". J. Am. Chem. Soc. 86 (15): 3157–3158. doi:10.1021/ja01069a041.
  5. Teachers, University of New South Wales Summer School for Chemistry (1963). Approach to Chemistry: Lectures and Workshop Reports of the ... Summer School for Chemistry Teachers. The University. p. 98. "This compound was described only a few months ago and, curiously enough, it is quite easy to make, although only a year ago I would have predicted that it would be difficult, or even impossible, to synthesize."
  6. Moore, John W.; Stanitski, Conrad L.; Jurs, Peter C. (2002). Chemistry: The Molecular Science. Harcourt College Publishers. p. 372. ISBN   978-0-03-032011-8. "This sharp bond angle creates severe bond strain in cubane, a compound thought previously impossible to synthesize because of the required 90° bond angles."
  7. Wiesenfeldt, Mario P.; Rossi-Ashton, James A.; Perry, Ian B.; Diesel, Johannes; Garry, Olivia L.; Bartels, Florian; Coote, Susannah C.; Ma, Xiaoshen; Yeung, Charles S.; Bennett, David J.; MacMillan, David W. C. (June 2023). "General access to cubanes as benzene bioisosteres". Nature. 618 (7965): 513–518. doi:10.1038/s41586-023-06021-8. ISSN   1476-4687. PMC   10680098 .
  8. Eaton, Philip E.; Cole, Thomas W. (1964). "The Cubane System". J. Am. Chem. Soc. 86 (5): 962–964. doi:10.1021/ja01059a072.
  9. Bliese, Marianne; Tsanaktsidis, John (1997). "Dimethyl Cubane-1,4-dicarboxylate: A Practical Laboratory Scale Synthesis". Australian Journal of Chemistry. 50 (3): 189. doi:10.1071/C97021.
  10. Fluorochem, Inc (July 1989). "Cubane Derivatives for Propellant Applications" (PDF). Archived (PDF) from the original on 2021-07-09.
  11. Eaton, Philip E. (1992). "Cubane: Ausgangsverbindungen für die Chemie der neunziger Jahre und des nächsten Jahrhunderts". Angewandte Chemie (in German). 104 (11): 1447–1462. Bibcode:1992AngCh.104.1447E. doi:10.1002/ange.19921041105.
  12. Freedman, H. H. (1961). "Tetraphenylcyclobutadiene Derivatives. II.1 Chemical Evidence for the Triplet State". J. Am. Chem. Soc. 83 (9): 2195–2196. doi:10.1021/ja01470a037.
  13. Freedman, H. H.; Petersen, D. R. (1962). "Tetraphenylcyclobutadiene Derivatives. IV.1 "Octaphenylcubane"; A Dimer of Tetraphenylcyclobutadiene". J. Am. Chem. Soc. 84 (14): 2837–2838. doi:10.1021/ja00873a046.
  14. Pawley, G. S.; Lipscomb, W. N.; Freedman, H. H. (1964). "Structure of the Dimer of tetraphenylcyclobutadiene". J. Am. Chem. Soc. 86 (21): 4725–4726. doi:10.1021/ja01075a042.
  15. Pichierri, F. (2014). "Hypercubane: DFT-based prediction of an Oh-symmetric double-shell hydrocarbon". Chem. Phys. Lett. 612: 198–202. Bibcode:2014CPL...612..198P. doi:10.1016/j.cplett.2014.08.032.
  16. "Hypercubane: DFT-based prediction of an Oh-symmetric double-shell hydrocarbon".
  17. Eaton, Philip E.; Maggini, Michele (1988). "Cubene (1,2-dehydrocubane)". J. Am. Chem. Soc. 110 (21): 7230–7232. doi:10.1021/ja00229a057.
  18. Minyaev, Ruslan M.; Minkin, Vladimir I.; Gribanova, Tatyana N. (2009). "2.3 A Theoretical Approach to the Study and Design of Prismane Systems". In Dodziuk, Helena (ed.). Strained Hydrocarbons . Wiley. p.  55. ISBN   9783527627141.
  19. Sugiyama M, Akiyama M, Yonezawa Y, Komaguchi K, Higashi M, Nozaki K, Okazoe T (August 2022). "Electron in a cube: Synthesis and characterization of perfluorocubane as an electron acceptor". Science. 377 (6607): 756–759. Bibcode:2022Sci...377..756S. doi:10.1126/science.abq0516. PMID   35951682. S2CID   251515925.
  20. Pichierri, F. Substituent effects in cubane and hypercubane: a DFT and QTAIM study. Theor Chem Acc 2017; 136: 114. doi : 10.1007/s00214-017-2144-5
  21. Krafft MP, Riess JG (August 2022). "Perfluorocubane-a tiny electron guzzler". Science. 377 (6607): 709. Bibcode:2022Sci...377..709K. doi:10.1126/science.adc9195. PMID   35951708. S2CID   251517529.
  22. Gilardi, Richard.; Maggini, Michele.; Eaton, Philip E. (1 October 1988). "X-ray structures of cubylcubane and 2-tert-butylcubylcubane: short cage-cage bonds". Journal of the American Chemical Society. 110 (21): 7232–7234. doi:10.1021/ja00229a058. ISSN   0002-7863.
  23. Eaton, Philip E. (1992). "Cubanes: Starting Materials for the Chemistry of the 1990s and the New Century". Angewandte Chemie International Edition in English. 31 (11): 1421–1436. doi:10.1002/anie.199214211. ISSN   1521-3773.
  24. Huang, Haw-Tyng; Zhu, Li; Ward, Matthew D.; Wang, Tao; Chen, Bo; Chaloux, Brian L.; Wang, Qianqian; Biswas, Arani; Gray, Jennifer L.; Kuei, Brooke; Cody, George D.; Epshteyn, Albert; Crespi, Vincent H.; Badding, John V.; Strobel, Timothy A. (21 January 2020). "Nanoarchitecture through Strained Molecules: Cubane-Derived Scaffolds and the Smallest Carbon Nanothreads". Journal of the American Chemical Society. 142 (42): 17944–17955. doi:10.1021/jacs.9b12352. ISSN   0002-7863. PMID   31961671. S2CID   210870993.
  25. Smith, Michael B.; March, Jerry (2001). March's Advanced Organic Chemistry (5th ed.). John Wiley & Sons. p.  1459. ISBN   0-471-58589-0.
  26. Kindler, K.; Lührs, K. (1966). "Studien über den Mechanismus chemischer Reaktionen, XXIII. Hydrierungen von Nitrilen unter Verwendung von Terpenen als Wasserstoffdonatoren". Chem. Ber. 99: 227–232. doi:10.1002/cber.19660990135.
  27. Cassar, Luigi; Eaton, Philip E.; Halpern, Jack (1970). "Catalysis of symmetry-restricted reactions by transition metal compounds. Valence isomerization of cubane". Journal of the American Chemical Society. 92 (11): 3515–3518. doi:10.1021/ja00714a075. ISSN   0002-7863.