Octanitrocubane

Last updated
Octanitrocubane
Octanitrocubane.svg
Octanitrocubane-3D-balls.png
Names
Preferred IUPAC name
Octanitrocubane
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C8N8O16/c17-9(18)1-2(10(19)20)5(13(25)26)3(1,11(21)22)7(15(29)30)4(1,12(23)24)6(2,14(27)28)8(5,7)16(31)32 Yes check.svgY
    Key: URIPDZQYLPQBMG-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C8N8O16/c17-9(18)1-2(10(19)20)5(13(25)26)3(1,11(21)22)7(15(29)30)4(1,12(23)24)6(2,14(27)28)8(5,7)16(31)32
    Key: URIPDZQYLPQBMG-UHFFFAOYAW
  • [O-][N+](=O)C12C3([N+]([O-])=O)C4([N+]([O-])=O)C1([N+]([O-])=O)C5([N+]([O-])=O)C2([N+]([O-])=O)C3([N+]([O-])=O)C45[N+]([O-])=O
Properties
C8N8O16
Molar mass 464.128 g·mol−1
AppearanceWhite solid
Density 1.979 g/cm3
Melting point 200 °C (392 °F; 473 K) (sublimes)
Solubility Slightly soluble in hexane, soluble in ethanol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Explosive compound
Explosive data
Shock sensitivity Low
Friction sensitivity Low
Detonation velocity 10,100 m/s
Related compounds
Related compounds
Cubane
Heptanitrocubane
Octafluorocubane
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Octanitrocubane (molecular formula: C8(NO2)8) is a proposed high explosive that, like TNT, is shock-insensitive (not readily detonated by shock). [1] The octanitrocubane molecule has the same chemical structure as cubane (C8H8) except that each of the eight hydrogen atoms is replaced by a nitro group (NO2). As of 1998, octanitrocubane had not been produced in quantities large enough to test its performance as an explosive. [2]

Contents

It is, however, not as powerful an explosive as once thought, as the high-density theoretical crystal structure has not been achieved. For this reason, heptanitrocubane, the slightly less nitrated form, is believed to have marginally better performance, despite having a worse oxygen balance.

Octanitrocubane is thought to have 20–25% greater performance than HMX (octogen). This increase in power is due to its highly expansive breakdown into CO2 and N2, as well as to the presence of strained chemical bonds in the molecule which have stored potential energy. In addition, it produces no water vapor upon combustion, making it less visible, and both the chemical itself and its decomposition products (nitrogen and carbon dioxide) are considered to be non-toxic.

Octanitrocubane was first synthesized by Philip Eaton (who was also the first to synthesize cubane in 1964) and Mao-Xi Zhang at the University of Chicago in 1999, with the structure proven by crystallographer Richard Gilardi of the United States Naval Research Laboratory. [3] [4]

Synthesis

Although octanitrocubane is predicted to be one of the most effective explosives, the difficulty of its synthesis inhibits practical use. Philip Eaton's synthesis was difficult and lengthy, and required cubane (rare to begin with) as a starting point. As a result, octanitrocubane is more valuable, gram for gram, than gold. [5]

Octanitrocubane synthesis.png

A proposed path to synthesis is the cyclotetramerization of the as yet undiscovered and presumably highly unstable dinitroacetylene. [6]

See also

References

  1. "Octanitrocubane: Easier said than done". University of Chicago News Office. March 20, 2001.
  2. Astakhov, A. M.; Stepanov, R. S.; Babushkin, A. Yu. (1998). "On the detonation parameters of octanitrocubane". Combustion, Explosion, and Shock Waves. 34 (1): 85–87. Bibcode:1998CESW...34...85A. doi:10.1007/BF02671823. S2CID   98585631.
  3. Zhang, Mao-Xi; Eaton, Philip E.; Gilardi, Richard (2000). "Hepta- and Octanitrocubanes". Angewandte Chemie International Edition . 39 (2): 401–404. doi:10.1002/(SICI)1521-3773(20000117)39:2<401::AID-ANIE401>3.0.CO;2-P. PMID   10649425.
  4. Eaton, Philip E.; Zhang, Mao-Xi; Gilardi, Richard; Gelber, Nat; Iyer, Sury; Surapaneni, Rao (2001). "Octanitrocubane: A New Nitrocarbon". Propellants, Explosives, Pyrotechnics. 27 (1): 1–6. doi:10.1002/1521-4087(200203)27:1<1::AID-PREP1>3.0.CO;2-6.
  5. Krause, Horst H. (2004). "New Energetic Materials" (PDF). In Teipel, Ulrich (ed.). Energetic Materials: Particle Processing and Characterization. pp. 1–25. ISBN   978-3-527-30240-6.
  6. Politzer, Peter; Lane, Pat; Wiener, John J. (8 June 1999). Cyclooligomerizations as Possible Routes to Cubane-Like Systems (PDF). ASIN   B00IT6MGOK. OCLC   227895131. ADA364287. Archived from the original on April 8, 2013 via Defense Technical Information Center.