Names | |
---|---|
Preferred IUPAC name Hexane [1] | |
Other names Sextane, [2] hexacarbane | |
Identifiers | |
3D model (JSmol) | |
1730733 | |
ChEBI | |
ChEMBL | |
ChemSpider | |
DrugBank | |
ECHA InfoCard | 100.003.435 |
EC Number |
|
1985 | |
KEGG | |
MeSH | n-hexane |
PubChem CID | |
RTECS number |
|
UNII | |
UN number | 1208 |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C6H14 | |
Molar mass | 86.178 g·mol−1 |
Appearance | Colorless liquid |
Odor | Petrolic |
Density | 0.6606 g mL−1 [3] |
Melting point | −96 to −94 °C; −141 to −137 °F; 177 to 179 K |
Boiling point | 68.5 to 69.1 °C; 155.2 to 156.3 °F; 341.6 to 342.2 K |
9.5 mg L−1 | |
log P | 3.764 |
Vapor pressure | 17.60 kPa (at 20.0 °C) |
Henry's law constant (kH) | 7.6 nmol Pa−1 kg−1 |
UV-vis (λmax) | 200 nm |
−74.6·10−6 cm3/mol | |
Refractive index (nD) | 1.375 |
Viscosity | 0.3 mPa·s |
0.08 D | |
Thermochemistry | |
Heat capacity (C) | 265.2 J K−1 mol−1 |
Std molar entropy (S⦵298) | 296.06 J K−1 mol−1 |
Std enthalpy of formation (ΔfH⦵298) | −199.4–−198.0 kJ mol−1 |
Std enthalpy of combustion (ΔcH⦵298) | −4180–−4140 kJ mol−1 |
Hazards | |
Occupational safety and health (OHS/OSH): | |
Main hazards | Reproductive toxicity – After aspiration, pulmonary oedema, pneumonitis [4] |
GHS labelling: | |
Danger | |
H225, H302, H305, H315, H336, H361fd, H373, H411 | |
P201, P202, P210, P233, P235, P240, P241, P242, P243, P260, P264, P271, P273, P280, P281, P301+P330+P331, P302+P352, P303+P361+P353, P304+P340, P308+P313, P310, P312, P314, P332+P313, P363, P370+P378, P391, P403+P233, P405, P501 | |
NFPA 704 (fire diamond) | |
Flash point | −26.0 °C (−14.8 °F; 247.2 K) |
234.0 °C (453.2 °F; 507.1 K) | |
Explosive limits | 1.2–7.7% |
Lethal dose or concentration (LD, LC): | |
LD50 (median dose) | 25 g kg−1(oral, rat) 28710 mg/kg (rat, oral) [5] |
LDLo (lowest published) | 56137 mg/kg (rat, oral) [5] |
NIOSH (US health exposure limits): | |
PEL (Permissible) | TWA 500 ppm (1800 mg/m3) [6] |
REL (Recommended) | TWA 50 ppm (180 mg/m3) [6] |
IDLH (Immediate danger) | 1100 ppm [6] |
Related compounds | |
Related alkanes | |
Supplementary data page | |
Hexane (data page) | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Hexane ( /ˈhɛkseɪn/ ) or n-hexane is an organic compound, a straight-chain alkane with six carbon atoms and the molecular formula C6H14. [7]
Hexane is a colorless liquid, odorless when pure, and with a boiling point of approximately 69 °C (156 °F). It is widely used as a cheap, relatively safe, largely unreactive, and easily evaporated non-polar solvent, and modern gasoline blends contain about 3% hexane. [8]
The term hexanes refers to a mixture, composed largely (>60%) of n-hexane, with varying amounts of the isomeric compounds 2-methylpentane and 3-methylpentane, and possibly, smaller amounts of nonisomeric C5, C6, and C7 (cyclo)alkanes. These "hexanes" mixtures are cheaper than pure hexane and are often used in large-scale operations not requiring a single isomer (e.g., as cleaning solvent or for chromatography).
Common name | IUPAC name | Text formula | Skeletal formula |
---|---|---|---|
Normal hexane, n-Hexane | Hexane | CH3(CH2)4CH3 | |
Isohexane | 2-Methylpentane | (CH3)2CH(CH2)2CH3 | |
3-Methylpentane | CH3CH2CH(CH3)CH2CH3 | ||
2,3-Dimethylbutane | (CH3)2CHCH(CH3)2 | ||
Neohexane | 2,2-Dimethylbutane | (CH3)3CCH2CH3 |
In industry, hexanes are used in the formulation of glues for shoes, leather products, and roofing. They are also used to extract cooking oils (such as canola oil or soybean oil) from seeds, for cleansing and degreasing a variety of items, and in textile manufacturing.
A typical laboratory use of hexanes is to extract oil and grease contaminants from water and soil for analysis. [9] Since hexane cannot be easily deprotonated, it is used in the laboratory for reactions that involve very strong bases, such as the preparation of organolithiums. For example, butyllithiums are typically supplied as a hexane solution. [10]
Hexanes are commonly used in chromatography as a non-polar solvent. Higher alkanes present as impurities in hexanes have similar retention times as the solvent, meaning that fractions containing hexane will also contain these impurities. In preparative chromatography, concentration of a large volume of hexanes can result in a sample that is appreciably contaminated by alkanes. This may result in a solid compound being obtained as an oil and the alkanes may interfere with analysis.
Hexane is chiefly obtained by refining crude oil. The exact composition of the fraction depends largely on the source of the oil (crude or reformed) and the constraints of the refining. [11] The industrial product (usually around 50% by weight of the straight-chain isomer) is the fraction boiling at 65–70 °C (149–158 °F).
All alkanes are colorless. [12] [13] The boiling points of the various hexanes are somewhat similar and, as for other alkanes, are generally lower for the more branched forms. The melting points are quite different and the trend is not apparent. [14]
Isomer | M.P. (°C) | M.P. (°F) | B.P. (°C) | B.P. (°F) |
---|---|---|---|---|
n-hexane | −95.3 | −139.5 | 68.7 | 155.7 |
3-methylpentane | −118.0 | −180.4 | 63.3 | 145.9 |
2-methylpentane (isohexane) | −153.7 | −244.7 | 60.3 | 140.5 |
2,3-dimethylbutane | −128.6 | −199.5 | 58.0 | 136.4 |
2,2-dimethylbutane (neohexane) | −99.8 | −147.6 | 49.7 | 121.5 |
Hexane has considerable vapor pressure at room temperature:
Temperature (°C) | Temperature (°F) | Vapor pressure (mmHg) | Vapor pressure (kPa) |
---|---|---|---|
−40 | −40 | 3.36 | 0.448 |
−30 | −22 | 7.12 | 0.949 |
−20 | −4 | 14.01 | 1.868 |
−10 | 14 | 25.91 | 3.454 |
0 | 32 | 45.37 | 6.049 |
10 | 50 | 75.74 | 10.098 |
20 | 68 | 121.26 | 16.167 |
25 | 77 | 151.28 | 20.169 |
30 | 86 | 187.11 | 24.946 |
40 | 104 | 279.42 | 37.253 |
50 | 122 | 405.31 | 54.037 |
60 | 140 | 572.76 | 76.362 |
Like most alkanes, hexanes characteristically exhibit low reactivity and are suitable solvents for reactive compounds. Commercial samples of n-hexane however often contains methylcyclopentane, which features tertiary C-H bonds, which are incompatible with some radical reactions. [15]
Inhalation of n-hexane at 5000 ppm for 10 minutes produces marked vertigo; 2500-1000 ppm for 12 hours produces drowsiness, fatigue, loss of appetite, and paresthesia in the distal extremities; 2500–5000 ppm produces muscle weakness, cold pulsation in the extremities, blurred vision, headache, and anorexia. [16] Chronic occupational exposure to elevated levels of n-hexane has been demonstrated to be associated with peripheral neuropathy in auto mechanics in the US, and neurotoxicity in workers in printing presses, and shoe and furniture factories in Asia, Europe, and North America. [17]
The US National Institute for Occupational Safety and Health (NIOSH) has set a recommended exposure limit (REL) for hexane isomers (not n-hexane) of 100 ppm (350 mg/m3 (0.15 gr/cu ft)) over an 8-hour workday. [18] However, for n-hexane, the current NIOSH REL is 50 ppm (180 mg/m3 (0.079 gr/cu ft)) over an 8-hour workday. [19] This limit was proposed as a permissible exposure limit (PEL) by the Occupational Safety and Health Administration in 1989; however, this PEL was overruled in US courts in 1992. [20] The current n-hexane PEL in the US is 500 ppm (1,800 mg/m3 (0.79 gr/cu ft)). [19]
Hexane and other volatile hydrocarbons (petroleum ether) present an aspiration risk. [21] n-Hexane is sometimes used as a denaturant for alcohol, and as a cleaning agent in the textile, furniture, and leather industries. It is slowly being replaced with other solvents. [22]
Like gasoline, hexane is highly volatile and is an explosion risk. The 1981 Louisville sewer explosions, which destroyed over 13 mi (21 km) of sewer lines and streets in Kentucky, were caused by ignition of hexane vapors which had been illegally discharged from a soybean processing plant owned by Ralston-Purina. Hexane was attributed as the cause of an explosion that occurred in the National University of Río Cuarto, Argentina on 5 December 2007, due to a hexane spill near a heat-producing machine that exploded, producing a fire that killed one student and injured 24 more.
Occupational hexane poisoning has occurred with Japanese sandal workers, Italian shoe workers, [23] Taiwan press proofing workers, and others. [24] Analysis of Taiwanese workers has shown occupational exposure to substances including n-hexane. [25] In 2010–2011, Chinese workers manufacturing iPhones were reported to have suffered hexane poisoning. [26] [27]
n-Hexane is biotransformed to 2-hexanol and further to 2,5-hexanediol in the body. The conversion is catalyzed by the enzyme cytochrome P450 utilizing oxygen from air. 2,5-Hexanediol may be further oxidized to 2,5-hexanedione, which is neurotoxic and produces a polyneuropathy. [22] In view of this behavior, replacement of n-hexane as a solvent has been discussed. n-Heptane is a possible alternative. [28]
In organic chemistry, xylene or xylol are any of three organic compounds with the formula (CH3)2C6H4. They are derived from the substitution of two hydrogen atoms with methyl groups in a benzene ring; which hydrogens are substituted determines which of three structural isomers results. It is a colorless, flammable, slightly greasy liquid of great industrial value.
Octane is a hydrocarbon and an alkane with the chemical formula C8H18, and the condensed structural formula CH3(CH2)6CH3. Octane has many structural isomers that differ by the location of branching in the carbon chain. One of these isomers, 2,2,4-trimethylpentane (commonly called iso-octane), is used as one of the standard values in the octane rating scale.
Heptane or n-heptane is the straight-chain alkane with the chemical formula H3C(CH2)5CH3 or C7H16. When used as a test fuel component in anti-knock test engines, a 100% heptane fuel is the zero point of the octane rating scale (the 100 point is 100% iso-octane). Octane number equates to the anti-knock qualities of a comparison mixture of heptane and iso-octane which is expressed as the percentage of iso-octane in heptane, and is listed on pumps for gasoline (petrol) dispensed globally.
Pentane is an organic compound with the formula C5H12—that is, an alkane with five carbon atoms. The term may refer to any of three structural isomers, or to a mixture of them: in the IUPAC nomenclature, however, pentane means exclusively the n-pentane isomer, in which case pentanes refers to a mixture of them; the other two are called isopentane (methylbutane) and neopentane (dimethylpropane). Cyclopentane is not an isomer of pentane because it has only 10 hydrogen atoms where pentane has 12.
Nonane is a linear alkane hydrocarbon with the chemical formula C9H20. It is a colorless, flammable liquid, occurring primarily in the component of the petroleum distillate fraction commonly called kerosene, which is used as a heating, tractor, and jet fuel. Nonane is also used as a solvent, distillation chaser, fuel additive, and a component in biodegradable detergents.
White spirit (AU, UK and Ireland) or mineral spirits (US, Canada), also known as mineral turpentine (AU/NZ/ZA), turpentine substitute, and petroleum spirits, is a petroleum-derived clear liquid used as a common organic solvent in painting. There are also terms for specific kinds of white spirit, including Stoddard solvent and solvent naphtha (petroleum). White spirit is often used as a paint thinner, or as a component thereof, though paint thinner is a broader category of solvent. Odorless mineral spirits (OMS) have been refined to remove the more toxic aromatic compounds, and are recommended for applications such as oil painting.
The permissible exposure limit is a legal limit in the United States for exposure of an employee to a chemical substance or physical agent such as high level noise. Permissible exposure limits were established by the Occupational Safety and Health Administration (OSHA). Most of OSHA's PELs were issued shortly after adoption of the Occupational Safety and Health (OSH) Act in 1970.
Amyl acetate (pentyl acetate) is an organic compound and an ester with the chemical formula CH3COO[CH2]4CH3 and the molecular weight 130.19 g/mol. It is colorless and has a scent similar to bananas and apples. The compound is the condensation product of acetic acid and 1-pentanol. However, esters formed from other pentanol isomers (amyl alcohols), or mixtures of pentanols, are often referred to as amyl acetate. The symptoms of exposure to amyl acetate in humans are dermatitis, central nervous system depression, narcosis and irritation to the eyes and nose.
Hydrogen selenide is an inorganic compound with the formula H2Se. This hydrogen chalcogenide is the simplest and most commonly encountered hydride of selenium. H2Se is a colorless, flammable gas under standard conditions. It is the most toxic selenium compound with an exposure limit of 0.05 ppm over an 8-hour period. Even at extremely low concentrations, this compound has a very irritating smell resembling that of decayed horseradish or "leaking gas", but smells of rotten eggs at higher concentrations.
Isopropyl acetate is an ester, an organic compound which is the product of esterification of acetic acid and isopropanol. It is a clear, colorless liquid with a characteristic fruity odor.
2,2-Dimethylbutane, trivially known as neohexane, is an organic compound with formula C6H14 or (H3C-)3-C-CH2-CH3. It is therefore an alkane, indeed the most compact and branched of the hexane isomers — the only one with a quaternary carbon and a butane (C4) backbone.
1,1,2-Trichloroethane, vinyl trichloride or 1,1,2-TCA, is an organochloride solvent with the molecular formula C2H3Cl3 and the structural formula CH2Cl—CHCl2. It is a colourless, sweet-smelling liquid that does not dissolve in water, but is soluble in most organic solvents. It is an isomer of 1,1,1-trichloroethane, and a byproduct of its manufacture.
1,2-Dichlorobenzene, or orthodichlorobenzene (ODCB), is an aryl chloride and isomer of dichlorobenzene with the formula C6H4Cl2. This colourless liquid is poorly soluble in water but miscible with most organic solvents. It is a derivative of benzene, consisting of two adjacent chlorine atoms.
An occupational hazard is a hazard experienced in the workplace. This encompasses many types of hazards, including chemical hazards, biological hazards (biohazards), psychosocial hazards, and physical hazards. In the United States, the National Institute for Occupational Safety and Health (NIOSH) conduct workplace investigations and research addressing workplace health and safety hazards resulting in guidelines. The Occupational Safety and Health Administration (OSHA) establishes enforceable standards to prevent workplace injuries and illnesses. In the EU, a similar role is taken by EU-OSHA.
Xylidine can refer to any of the six isomers of xylene amine, or any mixture of them.
1,2,4-Trichlorobenzene is an organochlorine compound, one of three isomers of trichlorobenzene. It is a derivative of benzene with three chloride substituents. It is a colorless liquid used as a solvent for a variety of compounds and materials.
3-Methylpentane is a branched alkane with the molecular formula C6H14. It is a structural isomer of hexane composed of a methyl group bonded to the third carbon atom in a pentane chain. It is of similar structure to the isomeric 2-methylpentane, which has the methyl group located on the second carbon of the pentane chain.
Petroleum naphtha is an intermediate hydrocarbon liquid stream derived from the refining of crude oil with CAS-no 64742-48-9. It is most usually desulfurized and then catalytically reformed, which rearranges or restructures the hydrocarbon molecules in the naphtha as well as breaking some of the molecules into smaller molecules to produce a high-octane component of gasoline.
EPN is an insecticide of the phosphonothioate class. It is used against pests such as European corn borer, rice stem borer, bollworm, tobacco budworm, and boll weevil.
Petroleum benzine is a hydrocarbon-based solvent mixture that is classified by its physical properties rather than a specific chemical composition. This complicates distinction within the long list of petroleum distillate solvent mixtures: mineral spirits, naphtha, petroleum naptha, white gas, white spirits, turps substitute, mineral turpentine, petroleum ether, ligroin, and Stoddard solvent.