Hydrogen selenide

Last updated
Hydrogen selenide
Structural diagram of the hydrogen selenide molecule Hydrogen-selenide-2D-dimensions.svg
Structural diagram of the hydrogen selenide molecule
Space-filling model of the hydrogen selenide molecule Hydrogen-selenide-3D-vdW.svg
Space-filling model of the hydrogen selenide molecule
IUPAC name
Hydrogen selenide
Other names
Hydroselenic acid
selenium hydride
3D model (JSmol)
ECHA InfoCard 100.029.071 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 231-978-9
PubChem CID
RTECS number
  • X1050000
UN number 2202
  • InChI=1S/H2Se/h1H2 Yes check.svgY
  • InChI=1/H2Se/h1H2
  • [SeH2]
Molar mass 80.98 g/mol
AppearanceColorless gas
Odor decayed horseradish [1]
Density 3.553 g/dm3
Melting point −65.73 °C (−86.31 °F; 207.42 K)
Boiling point −41.25 °C (−42.25 °F; 231.90 K)
0.70 g/100 mL
Solubility soluble in CS2, phosgene
Vapor pressure 9.5 atm (21°C) [1]
Acidity (pKa)3.89
Conjugate acid Selenonium
Conjugate base Selenide
Occupational safety and health (OHS/OSH):
Main hazards
Extremely toxic and flammable
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-bottle.svg GHS-pictogram-skull.svg GHS-pictogram-pollu.svg
H220, H280, H330, H410
P210, P260, P271, P273, P284, P304+P340, P310, P320, P377, P381, P391, P403, P403+P233, P405, P410+P403, P501
NFPA 704 (fire diamond)
Flash point flammable gas
Lethal dose or concentration (LD, LC):
0.3 ppm (guinea pig, 8 hr)
5.9 ppm (rat, 1 hr) [2]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 0.05 ppm (0.2 mg/m3) [1]
REL (Recommended)
TWA 0.05 ppm (0.2 mg/m3) [1]
IDLH (Immediate danger)
1 ppm [1]
Safety data sheet (SDS) ICSC 0284
Related compounds
Other anions
Other cations
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Hydrogen selenide is an inorganic compound with the formula H2Se. This hydrogen chalcogenide is the simplest and most commonly encountered hydride of selenium. H2Se is a colorless, flammable gas under standard conditions. It is the most toxic selenium compound [3] with an exposure limit of 0.05 ppm over an 8-hour period. [4] [5] Even at extremely low concentrations, this compound has a very irritating smell resembling that of decayed horseradish or 'leaking gas', but smells of rotten eggs at higher concentrations.


Structure and properties

H2Se adopts a bent structure with a H−Se−H bond angle of 91°[ citation needed ]. Consistent with this structure, three IR-active vibrational bands are observed: 2358, 2345, and 1034 cm−1. [6]

The properties of H2S and H2Se are similar, although the selenide is more acidic with pKa = 3.89 and the second pKa = 11, [6] or 15.05 ± 0.02 at 25 °C. [7]


Industrially, it is produced by treating elemental selenium at T > 300 °C with hydrogen gas. [8] A number of routes to H2Se have been reported, which are suitable for both large and small scale preparations. In the laboratory, H2Se is usually prepared by the action of water on Al2Se3, concomitant with formation of hydrated alumina. A related reaction involves the acid hydrolysis of FeSe. [9]

Al2Se3 + 6 H2O ⇌ 2 Al(OH)3 + 3 H2Se

H2Se can also be prepared by means of different methods based on the in situ generation in aqueous solution using boron hydride, Marsh test and Devarda's alloy. According to the Sonoda method, H2Se is generated from the reaction of H2O and CO on Se in the presence of Et3N. [10] H2Se can be purchased in cylinders.


Elemental selenium can be recovered from H2Se through a reaction with aqueous sulfur dioxide (SO2).

2 H2Se + SO2 ⇌ 2 H2O + 2 Se + S

Its decomposition is used to prepare the highly pure element.


H2Se is commonly used in the synthesis of Se-containing compounds. It adds across alkenes. Illustrative is the synthesis of selenoureas from cyanamides: [11]


H2Se gas is used to dope semiconductors with selenium.


Hydrogen selenide is hazardous, being the most toxic selenium compound [3] and far more toxic than its congener hydrogen sulfide. The threshold limit value is 0.05 ppm. The gas acts as an irritant at concentrations higher than 0.3 ppm, which is the main warning sign of exposure; below 1 ppm, this is "insufficient to prevent exposure", while at 1.5 ppm the irritation is "intolerable". [5] Exposure at high concentrations, even for less than a minute, causes the gas to attack the eyes and mucous membranes; this causes cold-like symptoms for at least a few days afterwards. In Germany, the limit in drinking water is 0.008 mg/L, and the US EPA recommends a maximum contamination of 0.01 mg/L. [8] [12]

Despite being extremely toxic, no human fatalities have yet been reported. It is suspected that this is due to the gas' tendency to oxidise to form red selenium in mucous membranes; elemental selenium is less toxic than selenides are. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Selenium</span> Chemical element, symbol Se and atomic number 34

Selenium is a chemical element with the symbol Se and atomic number 34. It is a nonmetal with properties that are intermediate between the elements above and below in the periodic table, sulfur and tellurium, and also has similarities to arsenic. It seldom occurs in its elemental state or as pure ore compounds in the Earth's crust. Selenium – from Greek selḗnē – was discovered in 1817 by Jöns Jacob Berzelius, who noted the similarity of the new element to the previously discovered tellurium.

<span class="mw-page-title-main">1,2-Dibromoethane</span> Chemical compound

1,2-Dibromoethane, also known as ethylene dibromide (EDB), is an organobromine compound with the chemical formula C
. Although trace amounts occur naturally in the ocean, where it is formed probably by algae and kelp, it is mainly synthetic. It is a dense colorless liquid with a faint, sweet odor, detectable at 10 ppm, and is a widely used and sometimes-controversial fumigant. The combustion of 1,2-dibromoethane produces hydrogen bromide gas that is significantly corrosive.

<span class="mw-page-title-main">Phosphine</span> Chemical compound hydrogen phosphide

Phosphine is a colorless, flammable, highly toxic compound with the chemical formula PH3, classed as a pnictogen hydride. Pure phosphine is odorless, but technical grade samples have a highly unpleasant odor like rotting fish, due to the presence of substituted phosphine and diphosphane. With traces of P2H4 present, PH3 is spontaneously flammable in air (pyrophoric), burning with a luminous flame. Phosphine is a highly toxic respiratory poison, and is immediately dangerous to life or health at 50 ppm. Phosphine has a trigonal pyramidal structure.

<span class="mw-page-title-main">Cyclohexanol</span> Chemical compound

Cyclohexanol is the organic compound with the formula HOCH(CH2)5. The molecule is related to cyclohexane by replacement of one hydrogen atom by a hydroxyl group. This compound exists as a deliquescent colorless solid with a camphor-like odor, which, when very pure, melts near room temperature. Millions of tonnes are produced annually, mainly as a precursor to nylon.

<span class="mw-page-title-main">Pentaborane(9)</span> Chemical compound

Pentaborane(9) is an inorganic compound with the formula B5H9. It is one of the most common boron hydride clusters, although it is a highly reactive compound. Because of its high reactivity toward oxygen, it was once evaluated as rocket or jet fuel. Like many of the smaller boron hydrides, pentaborane is colourless, diamagnetic, and volatile. It is related to pentaborane(11) (B5H11).

<span class="mw-page-title-main">Immediately dangerous to life or health</span> Exposure to dangerous levels of airborne contaminants

The term immediately dangerous to life or health (IDLH) is defined by the US National Institute for Occupational Safety and Health (NIOSH) as exposure to airborne contaminants that is "likely to cause death or immediate or delayed permanent adverse health effects or prevent escape from such an environment." Examples include smoke or other poisonous gases at sufficiently high concentrations. It is calculated using the LD50 or LC50. The Occupational Safety and Health Administration (OSHA) regulation defines the term as "an atmosphere that poses an immediate threat to life, would cause irreversible adverse health effects, or would impair an individual's ability to escape from a dangerous atmosphere."

<span class="mw-page-title-main">Ethylbenzene</span> Hydrocarbon compound; precursor to styrene and polystyrene

Ethylbenzene is an organic compound with the formula C6H5CH2CH3. It is a highly flammable, colorless liquid with an odor similar to that of gasoline. This monocyclic aromatic hydrocarbon is important in the petrochemical industry as an reaction intermediate in the production of styrene, the precursor to polystyrene, a common plastic material. In 2012, more than 99% of ethylbenzene produced was consumed in the production of styrene.

<span class="mw-page-title-main">Phosphorus trichloride</span> Chemical compound

Phosphorus trichloride is an inorganic compound with the chemical formula PCl3. A colorless liquid when pure, it is an important industrial chemical, being used for the manufacture of phosphites and other organophosphorus compounds. It is toxic and reacts readily with water to release hydrogen chloride.

<span class="mw-page-title-main">Heptachlor</span> Chemical compound

Heptachlor is an organochlorine compound that was used as an insecticide. Usually sold as a white or tan powder, heptachlor is one of the cyclodiene insecticides. In 1962, Rachel Carson's Silent Spring questioned the safety of heptachlor and other chlorinated insecticides. Due to its highly stable structure, heptachlor can persist in the environment for decades. In the United States, the Environmental Protection Agency has limited the sale of heptachlor products to the specific application of fire ant control in underground transformers. The amount that can be present in different foods is regulated.

<span class="mw-page-title-main">Allyl alcohol</span> Organic compound (CH2=CHCH2OH)

Allyl alcohol is an organic compound with the structural formula CH2=CHCH2OH. Like many alcohols, it is a water-soluble, colourless liquid. It is more toxic than typical small alcohols. Allyl alcohol is used as a raw material for the production of glycerol, but is also used as a precursor to many specialized compounds such as flame-resistant materials, drying oils, and plasticizers. Allyl alcohol is the smallest representative of the allylic alcohols.

2-Chloroethanol (also called ethylene chlorohydrin or glycol chlorohydrin) is an organic chemical compound with the chemical formula HOCH2CH2Cl and the simplest beta-halohydrin (chlorohydrin). This colorless liquid has a pleasant ether-like odor. It is miscible with water. The molecule is bifunctional, consisting of both an alkyl chloride and an alcohol functional group.

Tellurium hexafluoride is the inorganic compound of tellurium and fluorine with the chemical formula TeF6. It is a colorless, highly toxic gas with an unpleasant odor.

Perchloryl fluoride is a reactive gas with the chemical formula ClO
. It has a characteristic sweet odor that resembles gasoline and kerosene. It is toxic and is a powerful oxidizing and fluorinating agent. It is the acid fluoride of perchloric acid.

<span class="mw-page-title-main">Glycidol</span> Chemical compound

Glycidol is an organic compound that contains both epoxide and alcohol functional groups. Being bifunctional, it has a variety of industrial uses. The compound is a slightly viscous liquid that is slightly unstable and is not often encountered in pure form.

<i>n</i>-Butylamine Chemical compound

n-Butylamine is an organic compound (specifically, an amine) with the formula CH3(CH2)3NH2. This colourless liquid is one of the four isomeric amines of butane, the others being sec-butylamine, tert-butylamine, and isobutylamine. It is a liquid having the fishy, ammonia-like odor common to amines. The liquid acquires a yellow color upon storage in air. It is soluble in all organic solvents. Its vapours are heavier than air and it produces toxic oxides of nitrogen during combustion.

<span class="mw-page-title-main">Ethenone</span> Organic compound with the formula H2C=C=O

In organic chemistry, ethenone is the formal name for ketene, an organic compound with formula C2H2O or H2C=C=O. It is the simplest member of the ketene class. It is an important reagent for acetylations.

Selenium hexafluoride is the inorganic compound with the formula SeF6. It is a very toxic colourless gas described as having a "repulsive" odor. It is not widely encountered and has no commercial applications.

Sterilant gas monitoring is the detection of hazardous gases used by health care and other facilities to sterilize medical supplies that cannot be sterilized by heat or steam methods. The current FDA approved sterilant gases are ethylene oxide, hydrogen peroxide and ozone. Other liquid sterilants, such as peracetic acid, may also be used for sterilization and may raise similar occupational health issues. Sterilization means the complete destruction of all biological life, and sterilization efficacy is typically considered adequate if less than one in a million microbes remain viable.

<span class="mw-page-title-main">Chloroacetaldehyde</span> Chemical compound

Chloroacetaldehyde is an organic compound with the formula ClCH2CHO. Like some related compounds, it is highly electrophilic reagent and a potentially dangerous alkylating agent. The compound is not normally encountered in the anhydrous form, but rather as the hemiacetal (ClCH2CH(OH))2O.

<span class="mw-page-title-main">Manure management</span>

Manure management refers to capture, storage, treatment, and utilization of animal manures in an environmentally sustainable manner. It can be retained in various holding facilities. Animal manure can occur in a liquid, slurry, or solid form. It is utilized by distribution on fields in amounts that enrich soils without causing water pollution or unacceptably high levels of nutrient enrichment. Manure management is a component of nutrient management.


  1. 1 2 3 4 5 NIOSH Pocket Guide to Chemical Hazards. "#0336". National Institute for Occupational Safety and Health (NIOSH).
  2. "Hydrogen selenide". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  3. 1 2 http://www.epa.gov/ttnatw01/hlthef/selenium.html, US Environmental Protection Agency, Air Toxins website
  4. 1 2 "CDC - Immediately Dangerous to Life or Health Concentrations (IDLH): Hydrogen selenide (as Se) - NIOSH Publications and Products". www.cdc.gov. 2018-11-02. Retrieved 2023-01-09.
  5. 1 2 https://www.cdc.gov/niosh/docs/81-123/pdfs/0336.pdf Occupational Health Guideline for Hydrogen Selenide, The National Institute for Occupational Safety and Health, 1978
  6. 1 2 William M. Haynes; David R. Lide; Thomas J. Bruno, eds. (2017). CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data (97th ed.). Boca Raton, Florida. ISBN   978-1-4987-5429-3. OCLC   957751024.
  7. Levy, Daniel E.; Myers, Rollie J. (1990). "Spectroscopic determination of the second dissociation constant of hydrogen selenide and the activity coefficients and spectral shifts of its ions". The Journal of Physical Chemistry. 94 (20): 7842–7847. doi:10.1021/j100383a020.
  8. 1 2 Bernd E. Langner "Selenium and Selenium Compounds" in Ullmann's Encyclopedia of Industrial Chemistry, 2005, Wiley-VCH, Weinheim. doi : 10.1002/14356007.a23_525.
  9. Féher, F. In "Handbook of Preparative Inorganic Chemistry"; Brauer, E., Ed.; Academic: New York, 1963; 1, p 418.
  10. Sonoda, N.; Kondo K.; Nagano, K.; Kambe, N.; Morimoto, F. Angewandte Chemie International Edition English 1980, vol. 19, page 308
  11. Cohen, V.I. (1980). "A Convenient Synthesis of Mono-, N,N′-Di-, and Trisubstituted Selenoureas from Methyl Carbamimidothioates (S-Methylpseudothioureas)". Synthesis. 1980: 60–63. doi:10.1055/s-1980-28927.
  12. https://www.osha.gov/dts/chemicalsampling/data/CH_246700.html Archived 2017-05-02 at the Wayback Machine , OSHA GENERAL INDUSTRY PEL: 0.05 ppm, 0.2 mg/m3 ,OSHA CONSTRUCTION INDUSTRY PEL: 0.05 ppm, 0.2 mg/m3 TWA