![]() | |
Names | |
---|---|
Other names ditellane Dihydrogen ditellanide | |
Identifiers | |
| |
3D model (JSmol) | |
ChEBI | |
ChemSpider | |
239518 | |
PubChem CID | |
| |
| |
Properties | |
H2Te2 | |
Molar mass | 257.22 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
Infobox references | |
Hydrogen ditelluride or ditellane is an unstable hydrogen dichalcogenide containing two tellurium atoms per molecule, with structure HTeTeH or (TeH)2. Hydrogen ditelluride is interesting to theorists because its molecule is simple yet asymmetric (with no centre of symmetry) and is predicted to be one of the easiest to detect parity violation, in which the left handed molecule has differing properties to the right handed one due to the effects of the weak force.
Hydrogen ditelluride can possibly be formed at the tellurium cathode in electrolysis in acid. [2] When electrolysed in alkaline solutions, a tellurium cathode produces ditelluride Te2−
2 ions, as well as Te2− and a red polytelluride. The greatest amount of ditelluride is made when pH is over 12. [3]
Apart from its speculative detection in electrolysis, ditellane has been detected in the gas phase produced from di-sec-butylditellane. [1] [4]
Hydrogen ditelluride has been investigated theoretically, with various properties predicted. The molecule is twisted with a C2 symmetry. There are two enantiomers. Hydrogen ditelluride is one of the simplest possible unsymmetrical molecules; any simpler molecule will not have the required low symmetry. The equilibrium geometry (not counting zero point energy or vibrational energy) has bond lengths of 2.879 Å between the tellurium atoms and 1.678 Å between hydrogen and tellurium. The H–Te–Te angle is 94.93°. The angle of lowest energy between the two H–Te bonds (dihedral angle) is 89.32°. The trans configuration is higher in energy (3.71 kcal/mol), and the cis would be even higher (4.69 kcal/mol). [5]
Being chiral, the molecule is predicted show evidence of parity violation, though this may get interference from stereomutation tunneling, where the P enantiomer and M enantiomer spontaneously convert into each other by quantum tunneling. The parity violation effect on energy comes about from virtual Z boson exchanges between the nucleus and electrons. [6] It is proportional to the cube of the atomic number, so is stronger in tellurium molecules than others higher up in the periodic table (O, S, Se). Because of parity violation, the energy of the two enantiomers differs, and is likely to be higher in this molecule than most molecules, so an effort is underway to observe this so-far undetected effect. The tunneling effect is reduced by higher masses, so that the deuterium form, D2Te2 will show less tunneling. In a torsional vibrational mode, the molecule can twist back and forward storing energy. Seven different quantum vibration levels are predicted below the energy to jump to the other enantiomer. The levels are numbered vt = 0 up to 6. The sixth level is predicted to be split into two energy levels because of quantum tunneling. [7] The parity violation energy is calculated as 3×10−9 cm−1 or 90 Hz. [7]
The different vibrational modes for H2Te are symmetrical stretch of H–Te, symmetrical bend of H–Te–Te, torsion, stretch Te–Te, asymmetrical stretch H–Te, asymmetrical bend of H–Te–Te. [7] The time to tunnel between enantiomers is only 0.6 ms for 1H2Te2, but is 66000 seconds (18 h 20 min) for the tritium isotopomer T2Te2. [7]
There are organic derivatives, in which the hydrogen is replaced by organic groups. One example is bis(2,4,6-tributylphenyl)ditellane. [8] Others are diphenylditellane and 1,2-bis(cyclohexylmethyl)ditellane.
Diatomic molecules are molecules composed of only two atoms, of the same or different chemical elements. The prefix di- is of Greek origin, meaning "two". If a diatomic molecule consists of two atoms of the same element, such as hydrogen (H2) or oxygen (O2), then it is said to be homonuclear. Otherwise, if a diatomic molecule consists of two different atoms, such as carbon monoxide (CO) or nitric oxide (NO), the molecule is said to be heteronuclear. The bond in a homonuclear diatomic molecule is non-polar.
In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential. The word "lysis" means to separate or break, so in terms, electrolysis would mean "breakdown via electricity".
A timeline of atomic and subatomic physics.
In chemistry, an enantiomer is one of two stereoisomers that are mirror images of each other that are non-superposable, much as one's left and right hands are mirror images of each other that cannot appear identical simply by reorientation. A single chiral atom or similar structural feature in a compound causes that compound to have two possible structures which are non-superposable, each a mirror image of the other. Each member of the pair is termed an enantiomorph ; the structural property is termed enantiomerism. The presence of multiple chiral features in a given compound increases the number of geometric forms possible, though there may still be some perfect-mirror-image pairs.
Rotational spectroscopy is concerned with the measurement of the energies of transitions between quantized rotational states of molecules in the gas phase. The spectra of polar molecules can be measured in absorption or emission by microwave spectroscopy or by far infrared spectroscopy. The rotational spectra of non-polar molecules cannot be observed by those methods, but can be observed and measured by Raman spectroscopy. Rotational spectroscopy is sometimes referred to as pure rotational spectroscopy to distinguish it from rotational-vibrational spectroscopy where changes in rotational energy occur together with changes in vibrational energy, and also from ro-vibronic spectroscopy where rotational, vibrational and electronic energy changes occur simultaneously.
In physical organic chemistry, a kinetic isotope effect (KIE) is the change in the reaction rate of a chemical reaction when one of the atoms in the reactants is replaced by one of its isotopes. Formally, it is the ratio of rate constants for the reactions involving the light (kL) and the heavy (kH) isotopically substituted reactants (isotopologues):
In chemistry, a molecule or ion is called chiral if it cannot be superposed on its mirror image by any combination of rotations, translations, and some conformational changes. This geometric property is called chirality. The terms are derived from Ancient Greek χείρ (cheir), meaning "hand"; which is the canonical example of an object with this property.
In quantum mechanics, a parity transformation is the flip in the sign of one spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates :
In physics and chemistry, a selection rule, or transition rule, formally constrains the possible transitions of a system from one quantum state to another. Selection rules have been derived for electromagnetic transitions in molecules, in atoms, in atomic nuclei, and so on. The selection rules may differ according to the technique used to observe the transition. The selection rule also plays a role in chemical reactions, where some are formally spin-forbidden reactions, that is, reactions where the spin state changes at least once from reactants to products.
The vibration theory of smell proposes that a molecule's smell character is due to its vibrational frequency in the infrared range. This controversial theory is an alternative to the more widely accepted docking theory of olfaction, which proposes that a molecule's smell character is due to a range of weak non-covalent interactions between its protein odorant receptor, such as electrostatic and Van der Waals interactions as well as H-bonding, dipole attraction, pi-stacking, metal ion, Cation–pi interaction, and hydrophobic effects, in addition to the molecule's conformation.
Sodium tellurite is an inorganic tellurium compound with formula Na2TeO3. It is a water-soluble white solid and a weak reducing agent. Sodium tellurite is an intermediate in the extraction of the element, tellurium; it is a product obtained from anode slimes and is a precursor to tellurium.
Electrolysis of water is the process of using electricity to decompose water into oxygen and hydrogen gas by a process called electrolysis. Hydrogen gas released in this way can be used as hydrogen fuel, or remixed with the oxygen to create oxyhydrogen gas, which is used in welding and other applications.
Molecular symmetry in chemistry describes the symmetry present in molecules and the classification of these molecules according to their symmetry. Molecular symmetry is a fundamental concept in chemistry, as it can be used to predict or explain many of a molecule's chemical properties, such as its dipole moment and its allowed spectroscopic transitions. To do this it is necessary to classify the states of the molecule using the irreducible representations from the character table of the symmetry group of the molecule. Many university level textbooks on physical chemistry, quantum chemistry, spectroscopy and inorganic chemistry devote a chapter to symmetry.
Quantum biology is the study of applications of quantum mechanics and theoretical chemistry to biological objects and problems. Many biological processes involve the conversion of energy into forms that are usable for chemical transformations, and are quantum mechanical in nature. Such processes involve chemical reactions, light absorption, formation of excited electronic states, transfer of excitation energy, and the transfer of electrons and protons in chemical processes, such as photosynthesis, olfaction and cellular respiration.
In chemistry, isomers are molecules or polyatomic ions with identical molecular formulas — that is, same number of atoms of each element — but distinct arrangements of atoms in space. Isomerism is existence or possibility of isomers.
Triatomic hydrogen or H3 is an unstable triatomic molecule containing only hydrogen. Since this molecule contains only three atoms of hydrogen it is the simplest triatomic molecule and it is relatively simple to numerically solve the quantum mechanics description of the particles. Being unstable the molecule breaks up in under a millionth of a second. Its fleeting lifetime makes it rare, but it is quite commonly formed and destroyed in the universe thanks to the commonness of the trihydrogen cation. The infrared spectrum of H3 due to vibration and rotation is very similar to that of the ion, H+
3. In the early universe this ability to emit infrared light allowed the primordial hydrogen and helium gas to cool down so as to form stars.
Tellurols are analogues of alcohols and phenols where tellurium replaces oxygen. Tellurols, selenols, and thiols have similar properties, but tellurols are the least stable. Although they are fundamental representatives of organotellurium compounds, tellurols are lightly studied because of their instability. Tellurol derivatives include telluroesters and tellurocyanates (RTeCN).
In chemistry, ethanium or protonated ethane is a highly reactive positive ion with formula C
2H+
7. It can be described as a molecule of ethane with one extra proton, that gives it a +1 electric charge.
Molybdenum(IV) telluride, molybdenum ditelluride or just molybdenum telluride is a compound of molybdenum and tellurium with formula MoTe2, corresponding to a mass percentage of 27.32% molybdenum and 72.68% tellurium. It can crystallise in two dimensional sheets which can be thinned down to monolayers that are flexible and almost transparent. It is a semiconductor, and can fluoresce. It is part of a class of materials called transition metal dichalcogenides. As a semiconductor the band gap lies in the infrared region. This raises the potential use as a semiconductor in electronics or an infrared detector.
Martin Quack is a German physical chemist and spectroscopist; he is a professor at ETH Zürich.