Last updated


IUPAC name
Other names
Pentaborane, pentaboron nonahydride, stable pentaborane
3D model (JSmol)
ECHA InfoCard 100.039.253 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 243-194-4
RTECS number
  • RY8925000
UN number 1380
  • InChI=1S/B5H9/c6-1-5-2(6)8-4(5)9-3(5)7-1/h1-5H Yes check.svgY
  • InChI=1/B5H9/c6-2-1-3(2,6)5(1,8-3)4(1,2,7-2)9-5/h1-5H
  • [H]1[BH]2[H][BH]3[BH]24[BH]1[H][BH]4[H]3
Molar mass 63.12 g/mol
AppearanceColorless liquid
Odor pungent, like sour milk [1]
Density 0.618 g/mL
Melting point −46.8 °C (−52.2 °F; 226.3 K)
Boiling point 60.1 °C (140.2 °F; 333.2 K)
Solubility Benzene, Cyclohexane, and in other hydrocarbons
Vapor pressure 171 mmHg (20°C) [1]
Occupational safety and health (OHS/OSH):
Main hazards
Extremely toxic, extremely flammable, can ignite spontaneously, corrosive
NFPA 704 (fire diamond)
Flash point 30 °C (86 °F; 303 K)
Explosive limits 0.42%-? [1]
Lethal dose or concentration (LD, LC):
<50 mg/kg [2]
3 ppm (mouse, 4 hr)
6 ppm (rat, 4 hr)
3.4 ppm (mouse, 4 hr)
35 ppm (dog, 15 min)
244 ppm (monkey, 2 min)
67 ppm (rat, 5 min)
40 ppm (mouse, 5 min)
31 ppm (rat, 15 min)
19 ppm (mouse, 15 min)
15 ppm (rat, 30 min)
11 ppm (mouse, 30 min)
10 ppm (rat, 1 hr)
6 ppm (mouse, 1 hr) [3]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 0.005 ppm (0.01 mg/m3) [1]
REL (Recommended)
TWA 0.005 ppm (0.01 mg/m3) ST 0.015 ppm (0.03 mg/m3) [1]
IDLH (Immediate danger)
1 ppm [1]
0 D
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Pentaborane(9) is an inorganic compound with the formula B5H9. It is one of the most common boron hydride clusters, although it is a highly reactive compound. Because of its high reactivity toward oxygen, it was once evaluated as rocket or jet fuel. Like many of the smaller boron hydrides, pentaborane is colourless, diamagnetic, and volatile. It is related to pentaborane(11) (B5H11).

Structure, synthesis, properties

Its structure is that of five atoms of boron arranged in a square pyramid. Each boron has a terminal hydride ligand and four hydrides span the edges of the base of the pyramid. It is classified as a nido cage.

It was first prepared by Alfred Stock by pyrolysis of diborane at about 200 °C. [5] An improved synthesis starts from salts of octahydrotriborate (B3H8), which is converted to the bromide B3H7Br using HBr. Pyrolysis of this bromide gives pentaborane. [6]

5 B3H7Br → 3 B5H9 + 5 Br + 4 H2

In the U.S., pentaborane was produced on a commercial scale by Callery Chemical Company.

Above 150 °C, it decomposes, producing hydrogen. In storage, it decomposes negligibly, yielding a small amount of hydrogen and solid residue; when it occurs in a closed container, the consequent rise of pressure can be dangerous. It is much more stable in presence of water than diborane. Pentaborane is a nonpolar compound, so it is soluble in hydrocarbons like benzene, and cyclohexane, and in greases including those used in lab equipment.


The chemistry of pentaborane is extensive. [7] Halogenation give the symmetrical derivatives B5H8X, which can be isomerised to place the halide on the base of the square pyramid. With strong bases such as alkyl lithium reagents, it can be deprotonated and the resulting lithium salts react with diverse electrophiles to give substituted derivatives. It is Lewis acidic, forming double adducts with two equivalents of trimethylphosphine. Pentaborane is used for the synthesis of other boron hydride clusters. It is also a precursor to metallaboranes. For example, it reacts with diiron nonacarbonyl to give B4H8Fe(CO)3.

History of its use as a fuel

Pentaborane was evaluated by both the U.S. and Russian armed services as a so-called "exotic fuel". Because simple boron compounds burn with a characteristic green flame, the nickname for this fuel in the U.S. industry was "Green Dragon". In terms of heat of combustion, pentaborane surpasses its equivalent carbon compounds because their self-linking element, carbon, weighs at least one atomic mass unit more than an atom of boron, and some boranes contain more hydrogen than the carbon equivalent. The ease of breaking the chemical bonds of the compound is also taken into consideration.

Interest in this substance began as a possible fuel for high-speed jets. The propellant mix that would produce the greatest specific impulse for a rocket motor is sometimes given as oxygen difluoride and pentaborane[ citation needed ]. During the early years of the space race and the missile gap, American rocket engineers thought they could more cheaply produce a rocket that would compete with the Soviets by using an existing first stage and putting an upper stage with an engine that produces thrust at a very high specific impulse atop it. So projects were begun to investigate this fuel.

This pentaborane was considered for use as a fuel by North American Aviation when the XB-70 Valkyrie was in the planning stages, but the aircraft ended up using hydrocarbon fuel instead. Pentaborane was also investigated to be used as a bipropellant with nitrogen tetroxide. [8] In the Soviet Union, Valentin Glushko used it for the experimental RD-270M rocket engine, under development between 1962 and 1970. [9]

Other boranes were evaluated as fuels, including propylpentaborane (BEF-2) and ethyldecaborane (REF-3). [10] Diborane and decaborane and their derivates were also investigated.

Problems with this fuel include its toxicity and its characteristic of bursting into flame on contact with the air. Furthermore, its exhaust (when used in a jet engine) would also be toxic.

The US destroyed its last stockpiles of "Green Dragon" in 2000, long after the pentaborane had been discarded as unworkable. The destruction procedure hydrolyzed the pentaborane with steam to yield hydrogen and a boric acid solution. The long delay occurred in part because there are no industrial plants consuming pentaborane as a feedstock. Instead, army engineers constructed a bespoke system, nicknamed the "Dragon Slayer". [11]


As one of the compounds that have a NFPA 704 (fire diamond) rating of 4 for every category, it is naturally extremely dangerous.

Above 30 °C it can form explosive concentration of vapors with air. Its vapors are heavier than air. It is pyrophoric—can ignite spontaneously in contact with air, when even slightly impure. It can also readily form shock sensitive explosive compounds, and reacts violently with some fire suppressants, notably with halocarbons and water. It is highly toxic and symptoms of lower-level exposure may occur with up to 48 hours delay. Its acute toxicity is comparable to some nerve agents.

Occupational exposure limits for pentaborane set by the Occupational Safety and Health Administration and National Institute for Occupational Safety and Health stand at 0.005 ppm (0.01 mg/m3) over an eight-hour time-weighted average, with a short-term exposure limit of 0.015 ppm (0.03 mg/m3). [12] The acute toxicity of pentaborane has caused it to be considered immediately dangerous to life and health, with a limit set at 1 ppm. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Boranes</span>

Boranes is the name given to compounds with the formula BxHy and related anions. Many such boranes are known. Most common are those with 1 to 12 boron atoms. Although they have few practical applications, the boranes exhibit structures and bonding that differs strongly from the patterns seen in hydrocarbons. Hybrids of boranes and hydrocarbons, the carboranes are also well developed.

<span class="mw-page-title-main">Diborane</span> Chemical compound

Diborane(6), generally known as diborane, is the chemical compound with the formula B2H6. It is a toxic, colorless, and pyrophoric gas with a repulsively sweet odor. Diborane is a key boron compound with a variety of applications. It has attracted wide attention for its electronic structure. Several of its derivatives are useful reagents.

Monomethylhydrazine is a highly toxic, volatile hydrazine derivative with the chemical formula CH3NHNH2. It is used as a rocket propellant in bipropellant rocket engines because it is hypergolic with various oxidizers such as nitrogen tetroxide and nitric acid. As a propellant, it is described in specification MIL-PRF-27404.

<span class="mw-page-title-main">Cyclohexanol</span> Chemical compound

Cyclohexanol is the organic compound with the formula HOCH(CH2)5. The molecule is related to cyclohexane by replacement of one hydrogen atom by a hydroxyl group. This compound exists as a deliquescent colorless solid with a camphor-like odor, which, when very pure, melts near room temperature. Millions of tonnes are produced annually, mainly as a precursor to nylon.

<span class="mw-page-title-main">Decaborane</span> Chemical compound

Decaborane, also called decaborane(14), is the borane with the chemical formula B10H14. This white crystalline compound is one of the principal boron hydride clusters, both as a reference structure and as a precursor to other boron hydrides. It is toxic and volatile, with a foul odor.

<span class="mw-page-title-main">Stibine</span> Chemical compound

Stibine (IUPAC name: stibane) is a chemical compound with the formula SbH3. A pnictogen hydride, this colourless, highly toxic gas is the principal covalent hydride of antimony, and a heavy analogue of ammonia. The molecule is pyramidal with H–Sb–H angles of 91.7° and Sb–H distances of 170.7 pm (1.707 Å). This gas has an offensive smell like hydrogen sulfide (rotten eggs).

<span class="mw-page-title-main">Lithium hydride</span> Chemical compound

Lithium hydride is an inorganic compound with the formula LiH. This alkali metal hydride is a colorless solid, although commercial samples are grey. Characteristic of a salt-like (ionic) hydride, it has a high melting point, and it is not soluble but reactive with all protic organic solvents. It is soluble and nonreactive with certain molten salts such as lithium fluoride, lithium borohydride, and sodium hydride. With a molar mass of 7.95 g/mol, it is the lightest ionic compound.

Hydrogen selenide is an inorganic compound with the formula H2Se. This hydrogen chalcogenide is the simplest and most commonly encountered hydride of selenium. H2Se is a colorless, flammable gas under standard conditions. It is the most toxic selenium compound with an exposure limit of 0.05 ppm over an 8-hour period. Even at extremely low concentrations, this compound has a very irritating smell resembling that of decayed horseradish or 'leaking gas', but smells of rotten eggs at higher concentrations.

Dimethylamine is an organic compound with the formula (CH3)2NH. This secondary amine is a colorless, flammable gas with an ammonia-like odor. Dimethylamine is commonly encountered commercially as a solution in water at concentrations up to around 40%. An estimated 270,000 tons were produced in 2005.

2-Chloroethanol (also called ethylene chlorohydrin or glycol chlorohydrin) is an organic chemical compound with the chemical formula HOCH2CH2Cl and the simplest beta-halohydrin (chlorohydrin). This colorless liquid has a pleasant ether-like odor. It is miscible with water. The molecule is bifunctional, consisting of both an alkyl chloride and an alcohol functional group.

<span class="mw-page-title-main">Ammonia borane</span> Chemical compound

Ammonia borane (also systematically named amminetrihydridoboron), also called borazane, is the chemical compound with the formula H3NBH3. The colourless or white solid is the simplest molecular boron-nitrogen-hydride compound. It has attracted attention as a source of hydrogen fuel, but is otherwise primarily of academic interest.

<span class="mw-page-title-main">2-Methoxyethanol</span> Chemical compound

2-Methoxyethanol, or methyl cellosolve, is an organic compound with formula C
that is used mainly as a solvent. It is a clear, colorless liquid with an ether-like odor. It is in a class of solvents known as glycol ethers which are notable for their ability to dissolve a variety of different types of chemical compounds and for their miscibility with water and other solvents. It can be formed by the nucleophilic attack of methanol on protonated ethylene oxide followed by proton transfer:

<span class="mw-page-title-main">Boron compounds</span>

Boron compounds are compounds containing the element boron. In the most familiar compounds, boron has the formal oxidation state +3. These include oxides, sulfides, nitrides, and halides.

Perchloryl fluoride is a reactive gas with the chemical formula ClO
. It has a characteristic sweet odor that resembles gasoline and kerosene. It is toxic and is a powerful oxidizing and fluorinating agent. It is the acid fluoride of perchloric acid.

<span class="mw-page-title-main">Hexachloroethane</span> Chemical compound

Hexachloroethane, also known as perchloroethane is the organochlorine compound with the chemical formula (CCl3)2. It is white solid at room temperature with a camphor-like odor. It has been used by the military in smoke compositions, such as base-eject smoke munitions.

<span class="mw-page-title-main">Bromochloromethane</span> Chemical compound

Bromochloromethane or methylene bromochloride and Halon 1011 is a mixed halomethane. It is a heavy low-viscosity liquid with refractive index 1.4808.

Selenium hexafluoride is the inorganic compound with the formula SeF6. It is a very toxic colourless gas described as having a "repulsive" odor. It is not widely encountered and has no commercial applications.

Trihydridoboron, also known as borane or borine, is an unstable and highly reactive molecule with the chemical formula BH
. The preparation of borane carbonyl, BH3(CO), played an important role in exploring the chemistry of boranes, as it indicated the likely existence of the borane molecule. However, the molecular species BH3 is a very strong Lewis acid. Consequently, it is highly reactive and can only be observed directly as a continuously produced, transitory, product in a flow system or from the reaction of laser ablated atomic boron with hydrogen.

<span class="mw-page-title-main">1,2-Dimethyldiborane</span> Chemical compound

1,2-Dimethyldiborane is an organoboron compound with the formula [(CH3)BH2]2. Structurally, it is related to diborane, but with methyl groups replacing terminal hydrides on each boron. It is the dimer of methylborane, CH3BH2, the simplest alkylborane. 1,2-Dimethyldiborane can exist in a cis- and a trans arrangement. 1,2-Dimethyldiborane is an easily condensed, colorless gas that ignites spontaneously in air.

<span class="mw-page-title-main">Methyldiborane</span> Chemical compound

Methyldiborane, CH3B2H5, or monomethyldiborane is the simplest of alkyldiboranes, consisting of a methyl group substituted for a hydrogen in diborane. As with other boranes it exists in the form of a dimer with a twin hydrogen bridge that uses three-center two-electron bonding between the two boron atoms, and can be imagined as methyl borane (CH3BH2) bound to borane (BH3). Other combinations of methylation occur on diborane, including 1,1-dimethylborane, 1,2-dimethyldiborane, trimethyldiborane, tetramethyldiborane, and trimethylborane (which is not a dimer). At room temperature the substance is at equilibrium between these molecules.


  1. 1 2 3 4 5 6 NIOSH Pocket Guide to Chemical Hazards. "#0481". National Institute for Occupational Safety and Health (NIOSH).
  2. Pentaborane chemical and safety data
  3. "Pentaborane". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  4. "NFPA Hazard Rating Information for Common Chemicals". Archived from the original on 17 February 2015. Retrieved 13 March 2015.
  5. Stock, A. (1933). The Hydrides of Boron and Silicon. New York: Cornell University Press. ISBN   0-8014-0412-6.
  6. Miller, V. R.; Ryschkewitsch, G. E. (1974). Pentaborane(9) (B5H9). Inorganic Syntheses. Vol. 15. pp. 118–122. doi:10.1002/9780470132463.ch26. ISBN   9780470132463.
  7. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  8. "N2O4/Pentaborane". Encyclopedia Astronautica. Archived from the original on 8 August 2007. Retrieved 11 August 2007.
  9. "RD-270M". Encyclopedia Astronautica. Archived from the original on 26 August 2002. Retrieved 11 August 2007.
  10. McDonald, G. (13 November 1957). "Thermal Stability of a Commercial Propyl Pentaborane (HEF-2) in the range 147 to 190 °C" (PDF). National Advisory Committee for Aeronautics.
  11. ""Dragon Slayer" neutralizes super fuel" (PDF). Engineer Update. U.S. Army Corps of Engineers. 25 (2). February 2001.
  12. CDC – NIOSH Pocket Guide to Chemical Hazards
  13. Documentation for Immediately Dangerous To Life or Health Concentrations (IDLHs)