Caesium hydride

Last updated
Caesium hydride
Caesium-hydride-unit-cell-3D-SF.png
  Caesium cation, Cs+
  Hydrogen anion, H
Names
IUPAC name
Caesium hydride
Other names
Cesium hydride
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/Cs.H/q+1;-1 Yes check.svgY
    Key: HXCOCQWMKNUQSA-UHFFFAOYSA-N Yes check.svgY
  • InChI=1S/Cs.H/q+1;-1
    Key: HXCOCQWMKNUQSA-UHFFFAOYSA-N
  • [H-].[Cs+]
Properties
CsH
Molar mass 133.91339 g/mol
AppearanceWhite or colorless crystals or powder [1]
Density 3.42 g/cm3 [1]
Melting point ~170 °C (decomposes) [1]
Structure
Face centered cubic
Octahedral
Related compounds
Other anions
Other cations
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Caesium hydride or cesium hydride is an inorganic compound of caesium and hydrogen with the chemical formula Cs H . It is an alkali metal hydride. It was the first substance to be created by light-induced particle formation in metal vapor, [2] and showed promise in early studies of an ion propulsion system using caesium. [3] It is the most reactive stable alkaline metal hydride of all. It is a powerful superbase and reacts with water extremely vigorously.

The caesium nucleus in CsH can be hyperpolarized through interactions with an optically pumped caesium vapor in a process known as spin-exchange optical pumping (SEOP). SEOP can increase the nuclear magnetic resonance (NMR) signal of caesium nucleus by an order of magnitude. [4]

It is very difficult to make caesium hydride in a pure form. Caesium hydride can be produced by heating caesium carbonate and metallic magnesium in hydrogen at 580 to 620 °C. [5]

Crystal structure

At room temperature and atmospheric pressure, CsH has the same structure as NaCl.

References

  1. 1 2 3 Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton, Florida: CRC Press. p. 4.57. ISBN   0-8493-0486-5.
  2. Tam, A.; Moe, G.; Happer, W. (1975). "Particle Formation by Resonant Laser Light in Alkali-Metal Vapor". Phys. Rev. Lett. 35 (24): 1630–33. Bibcode:1975PhRvL..35.1630T. doi:10.1103/PhysRevLett.35.1630.
  3. Burkhart, J. A.; Smith, F. J. (November 1963). "Application of dynamic programming to optimizing the orbital control process of a 24-hour communications satellite". NASA Technical Report.
  4. Ishikawa, K.; Patton, B.; Jau, Y.-Y.; Happer, W. (2007). "Spin Transfer from an Optically Pumped Alkali Vapor to a Solid". Phys. Rev. Lett. 98 (18) 183004. Bibcode:2007PhRvL..98r3004I. doi:10.1103/PhysRevLett.98.183004. PMID   17501572.
  5. A. Jamieson Walker (1924). A Text Book Of Inorganic Chemistry Volume I The Alkali Metals And Their Congeners.