Hexaborane(12)

Last updated
Hexaborane(12)
B6H12.png
Hexaborane(12)-GED-view-1-3D-bs-17.png
Identifiers
3D model (JSmol)
  • InChI=1S/B6H16/c1-2-5(1)6-3-4-6/h5-6H2,1-4H3
    Key: QXTIDELWZZSOOU-UHFFFAOYSA-N
  • [BH3]1[BH3][BH2]1[BH2]2[BH3][BH3]2
Properties
B6H12
Molar mass 76.96 g·mol−1
Appearancecolorless liquid
Melting point −82.3 °C (−116.1 °F; 190.8 K)
Boiling point 85 °C (185 °F; 358 K) (approx)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Hexaborane(12) is an inorganic compound with the formula B6H12. It is an obscure member of the boranes. It is a colorless liquid that, like most boron hydrides, is readily hydrolyzed and flammable.

The molecular structure conforms to C2 symmetry group. With the formula BnHn+6, it is classified as an arachno-cluster. As such the boron positions match six of the boron positions in the closo-B8H2−
8
.

Preparation

It is typically prepared by the cluster expansion method from B5H
8
, the conjugate base of pentaborane(9): [1]

LiB5H8 + 1/2 B2H6 → LiB6H11
LiB6H11 + HCl → B6H12 + LiCl

Related Research Articles

<span class="mw-page-title-main">Boron nitride</span> Refractory compound of boron and nitrogen with formula BN

Boron nitride is a thermally and chemically resistant refractory compound of boron and nitrogen with the chemical formula BN. It exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagonal form corresponding to graphite is the most stable and soft among BN polymorphs, and is therefore used as a lubricant and an additive to cosmetic products. The cubic variety analogous to diamond is called c-BN; it is softer than diamond, but its thermal and chemical stability is superior. The rare wurtzite BN modification is similar to lonsdaleite but slightly softer than the cubic form.

<span class="mw-page-title-main">Boron</span> Chemical element, symbol B and atomic number 5

Boron is a chemical element with the symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the boron group it has three valence electrons for forming covalent bonds, resulting in many compounds such as boric acid, the mineral sodium borate, and the ultra-hard crystals of boron carbide and boron nitride.

<span class="mw-page-title-main">Carbide</span> Inorganic compound group

In chemistry, a carbide usually describes a compound composed of carbon and a metal. In metallurgy, carbiding or carburizing is the process for producing carbide coatings on a metal piece.

<span class="mw-page-title-main">Boranes</span>

Boranes is the name given to compounds with the formula BxHy and related anions. Many such boranes are known. Most common are those with 1 to 12 boron atoms. Although they have few practical applications, the boranes exhibit structures and bonding that differs strongly from the patterns seen in hydrocarbons. Hybrids of boranes and hydrocarbons, the carboranes are also well developed.

<span class="mw-page-title-main">Diborane</span> Chemical compound

Diborane(6), generally known as diborane, is the chemical compound with the formula B2H6. It is a toxic, colorless, and pyrophoric gas with a repulsively sweet odor. Diborane is a key boron compound with a variety of applications. It has attracted wide attention for its electronic structure. Several of its derivatives are useful reagents.

<span class="mw-page-title-main">Decaborane</span> Chemical compound

Decaborane, also called decaborane(14), is the borane with the chemical formula B10H14. This white crystalline compound is one of the principal boron hydride clusters, both as a reference structure and as a precursor to other boron hydrides. It is toxic and volatile, with a foul odor.

<span class="mw-page-title-main">Carborane</span> Class of chemical compounds

Carboranes are electron-delocalized clusters composed of boron, carbon and hydrogen atoms. Like many of the related boron hydrides, these clusters are polyhedra or fragments of polyhedra. Carboranes are one class of heteroboranes.

<span class="mw-page-title-main">Hexaborane(10)</span> Chemical compound

Hexaborane, also called hexaborane(10) to distinguish it from hexaborane(12) (B6H12), is an inorganic compound with the formula B6H10. It is a colorless liquid that is unstable in air.

<span class="mw-page-title-main">Organoboron chemistry</span> Study of compounds containing a boron-carbon bond

Organoboron chemistry or organoborane chemistry is the chemistry of organoboron compounds or organoboranes, which are chemical compounds of boron and carbon that are organic derivatives of borane (BH3), for example trialkyl boranes..

<span class="mw-page-title-main">Boron arsenide</span> Chemical compound

Boron arsenide is a chemical compound involving boron and arsenic, usually with a chemical formula BAs. Other boron arsenide compounds are known, such as the subarsenide B12As2. Chemical synthesis of cubic BAs is very challenging and its single crystal forms usually have defects.

<span class="mw-page-title-main">Boron compounds</span>

Boron compounds are compounds containing the element boron. In the most familiar compounds, boron has the formal oxidation state +3. These include oxides, sulfides, nitrides, and halides.

<span class="mw-page-title-main">Sodium metaborate</span> Chemical compound

Sodium metaborate is a chemical compound of sodium, boron, and oxygen with formula NaBO
2
. However, the metaborate ion is trimeric in the anhydrous solid, therefore a more correct formula is Na3B3O6 or (Na+)3[B3O6]3−. The formula can be written also as Na
2
O
·B
2
O
3
to highlight the relation to the main oxides of sodium and boron. The name is also applied to several hydrates whose formulas can be written NaBO2·nH2O for various values of n.

<span class="mw-page-title-main">Yttrium borides</span> Chemical compound

Yttrium boride refers to a crystalline material composed of different proportions of yttrium and boron, such as YB2, YB4, YB6, YB12, YB25, YB50 and YB66. They are all gray-colored, hard solids having high melting temperatures. The most common form is the yttrium hexaboride YB6. It exhibits superconductivity at relatively high temperature of 8.4 K and, similar to LaB6, is an electron cathode. Another remarkable yttrium boride is YB66. It has a large lattice constant (2.344 nm), high thermal and mechanical stability, and therefore is used as a diffraction grating for low-energy synchrotron radiation (1–2 keV).

Boron monofluoride or fluoroborylene is a chemical compound with formula BF, one atom of boron and one of fluorine. It was discovered as an unstable gas and only in 2009 found to be a stable ligand combining with transition metals, in the same way as carbon monoxide. It is a subhalide, containing fewer than the normal number of fluorine atoms, compared with boron trifluoride. It can also be called a borylene, as it contains boron with two unshared electrons. BF is isoelectronic with carbon monoxide and dinitrogen; each molecule has 14 electrons.

Trihydridoboron, also known as borane or borine, is an unstable and highly reactive molecule with the chemical formula BH
3
. The preparation of borane carbonyl, BH3(CO), played an important role in exploring the chemistry of boranes, as it indicated the likely existence of the borane molecule. However, the molecular species BH3 is a very strong Lewis acid. Consequently, it is highly reactive and can only be observed directly as a continuously produced, transitory, product in a flow system or from the reaction of laser ablated atomic boron with hydrogen.

Lai-Sheng Wang is an experimental physical chemist currently serving as the Chair of the Chemistry Department at Brown University. Wang is known for his work on atomic gold pyramids and planar boron clusters.

<span class="mw-page-title-main">Borophene</span>

Borophene is a crystalline atomic monolayer of boron, i.e., it is a two-dimensional allotrope of boron and also known as boron sheet. First predicted by theory in the mid-1990s, different borophene structures were experimentally confirmed in 2015.

<span class="mw-page-title-main">Pentaborane(11)</span> Chemical compound

Pentaborane(11) is inorganic compound with the chemical formula B5H11. It is an obscure boron hydride cluster, especially relative to the heavily studied pentaborane(9) (B5H9). With two more hydrogen atoms than nido-pentaborane(9), pentaborane(11) is classified as an arachno- cluster.

<span class="mw-page-title-main">Ortho-carborane</span> Chemical compound

Ortho-carborane is the organoboron compound with the formula C2B10H12. The prefix ortho is derived from ortho. It is the most prominent carborane. This derivative has been considered for a wide range of applications from heat-resistant polymers to medical applications. It is a colorless solid that melts, without decomposition, at 320 °C.

Borane(1), boron monohydride, hydridoboron or borylene is the molecule with the formula BH. It exists as a gas but rapidly degrades when condensed. By contrast, the cluster [[B12H12]]2- (dodecaborate), which has very similar empirical formula, forms robust salts.

References

  1. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8. p.172.