Beryllium monohydride

Last updated
Beryllium monohydride
Identifiers
3D model (JSmol)
ChemSpider
  • InChI=1S/Be.H Yes check.svgY
    Key: AYBCUKQQDUJLQN-UHFFFAOYSA-N Yes check.svgY
  • [BeH]
Properties
BeH
Molar mass 10.02012 g mol−1
AppearanceColourless gas
Thermochemistry
Std molar
entropy
(S298)
176.83 J K−1 mol−1
321.20 kJ mol−1
Hazards
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 0.002 mg/m3
C 0.005 mg/m3 (30 minutes), with a maximum peak of 0.025 mg/m3 (as Be) [1]
REL (Recommended)
Ca C 0.0005 mg/m3 (as Be) [1]
IDLH (Immediate danger)
Ca [4 mg/m3 (as Be)] [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Beryllium monohydride (BeH) is an example of a molecule with a half-bond order according to molecular orbital theory. It is a metastable monoradical species which has only been observed in the gas phase. In beryllium monohydride, beryllium has a valency of one, and hydrogen has a valency of one.

BeH has only 5 electrons and is the simplest open shell neutral molecule, and is therefore extremely important for the benchmarking of ab initio methods. With such a light mass, it is also an important benchmark system for studying the breakdown of the Born-Oppenheimer approximation. Due to its simplicity, BeH is expected to be present in astronomical contexts such as exoplanetary atmospheres, cool stars, and the interstellar medium, but so far has only been found on the Sun. [2] Because of the long lifetime (by nuclear physics standards) of 11Be, 11BeH is the leading candidate for the formation of the first halo nucleonic molecule. [3]

BeH has been studied spectroscopically since 1928 and in over 80 theoretical studies (see [3] for a review).

The bond length is 134.2396(3) pm [3] and the dissociation energy is 17702(200) cm−1. [3]

The dimeric molecule Be2H2 has also been observed in an argon matrix at 10 K [4]

Related Research Articles

Dilithium, Li2, is a strongly electrophilic, diatomic molecule comprising two lithium atoms covalently bonded together. Li2 is known in the gas phase. It has a bond order of 1, an internuclear separation of 267.3 pm and a bond energy of 102 kJ/mol or 1.06 eV in each bond. The electron configuration of Li2 may be written as σ2.

<span class="mw-page-title-main">Rotational spectroscopy</span> Spectroscopy of quantized rotational states of gases

Rotational spectroscopy is concerned with the measurement of the energies of transitions between quantized rotational states of molecules in the gas phase. The spectra of polar molecules can be measured in absorption or emission by microwave spectroscopy or by far infrared spectroscopy. The rotational spectra of non-polar molecules cannot be observed by those methods, but can be observed and measured by Raman spectroscopy. Rotational spectroscopy is sometimes referred to as pure rotational spectroscopy to distinguish it from rotational-vibrational spectroscopy where changes in rotational energy occur together with changes in vibrational energy, and also from ro-vibronic spectroscopy where rotational, vibrational and electronic energy changes occur simultaneously.

<span class="mw-page-title-main">Morse potential</span> Model for the potential energy of a diatomic molecule

The Morse potential, named after physicist Philip M. Morse, is a convenient interatomic interaction model for the potential energy of a diatomic molecule. It is a better approximation for the vibrational structure of the molecule than the quantum harmonic oscillator because it explicitly includes the effects of bond breaking, such as the existence of unbound states. It also accounts for the anharmonicity of real bonds and the non-zero transition probability for overtone and combination bands. The Morse potential can also be used to model other interactions such as the interaction between an atom and a surface. Due to its simplicity, it is not used in modern spectroscopy. However, its mathematical form inspired the MLR (Morse/Long-range) potential, which is the most popular potential energy function used for fitting spectroscopic data.

Proflavine, also called proflavin and diaminoacridine, is an acriflavine derivative, a disinfectant bacteriostatic against many gram-positive bacteria. It has been used in the form of the dihydrochloride and hemisulfate salts as a topical antiseptic, and was formerly used as a urinary antiseptic.

<span class="mw-page-title-main">Matrix isolation</span> Experimental chemistry technique

Matrix isolation is an experimental technique used in chemistry and physics. It generally involves a material being trapped within an unreactive matrix. A host matrix is a continuous solid phase in which guest particles are embedded. The guest is said to be isolated within the host matrix. Initially the term matrix-isolation was used to describe the placing of a chemical species in any unreactive material, often polymers or resins, but more recently has referred specifically to gases in low-temperature solids. A typical matrix isolation experiment involves a guest sample being diluted in the gas phase with the host material, usually a noble gas or nitrogen. This mixture is then deposited on a window that is cooled to below the melting point of the host gas. The sample may then be studied using various spectroscopic procedures.

<span class="mw-page-title-main">Selenium dioxide</span> Chemical compound

Selenium dioxide is the chemical compound with the formula SeO2. This colorless solid is one of the most frequently encountered compounds of selenium.

<span class="mw-page-title-main">Beryllium hydride</span> Chemical compound

Beryllium hydride is an inorganic compound with the chemical formula n. This alkaline earth hydride is a colourless solid that is insoluble in solvents that do not decompose it. Unlike the ionically bonded hydrides of the heavier Group 2 elements, beryllium hydride is covalently bonded.

<span class="mw-page-title-main">Protonated hydrogen cyanide</span> Chemical compound

HCNH+, also known as protonated hydrogen cyanide, is a molecular ion of astrophysical interest. It also exists in the condensed state when formed by superacids.

<span class="mw-page-title-main">Cyano radical</span> Chemical compound

The cyano radical (or cyanido radical) is a radical with molecular formula CN, sometimes written CN. The cyano radical was one of the first detected molecules in the interstellar medium, in 1938. Its detection and analysis was influential in astrochemistry. The discovery was confirmed with a coudé spectrograph, which was made famous and credible due to this detection. ·CN has been observed in both diffuse clouds and dense clouds. Usually, CN is detected in regions with hydrogen cyanide, hydrogen isocyanide, and HCNH+, since it is involved in the creation and destruction of these species (see also Cyanogen).

<span class="mw-page-title-main">Chromium(I) hydride</span> Chemical compound

Chromium(I) hydride, systematically named chromium hydride, is an inorganic compound with the chemical formula (CrH)
n
. It occurs naturally in some kinds of stars where it has been detected by its spectrum. However, molecular chromium(I) hydride with the formula CrH has been isolated in solid gas matrices. The molecular hydride is very reactive. As such the compound is not well characterised, although many of its properties have been calculated via computational chemistry.

<span class="mw-page-title-main">Iron(I) hydride</span> Chemical compound

Iron(I) hydride, systematically named iron hydride and poly(hydridoiron) is a solid inorganic compound with the chemical formula (FeH)
n
. It is both thermodynamically and kinetically unstable toward decomposition at ambient temperature, and as such, little is known about its bulk properties.

<span class="mw-page-title-main">Morse/Long-range potential</span> Model of the potential energy of a diatomic molecule

The Morse/Long-range potential (MLR potential) is an interatomic interaction model for the potential energy of a diatomic molecule. Due to the simplicity of the regular Morse potential (it only has three adjustable parameters), it is very limited in its applicability in modern spectroscopy. The MLR potential is a modern version of the Morse potential which has the correct theoretical long-range form of the potential naturally built into it. It has been an important tool for spectroscopists to represent experimental data, verify measurements, and make predictions. It is useful for its extrapolation capability when data for certain regions of the potential are missing, its ability to predict energies with accuracy often better than the most sophisticated ab initio techniques, and its ability to determine precise empirical values for physical parameters such as the dissociation energy, equilibrium bond length, and long-range constants. Cases of particular note include:

  1. the c-state of dilithium (Li2): where the MLR potential was successfully able to bridge a gap of more than 5000 cm−1 in experimental data. Two years later it was found that the MLR potential was able to successfully predict the energies in the middle of this gap, correctly within about 1 cm−1. The accuracy of these predictions was much better than the most sophisticated ab initio techniques at the time.
  2. the A-state of Li2: where Le Roy et al. constructed an MLR potential which determined the C3 value for atomic lithium to a higher-precision than any previously measured atomic oscillator strength, by an order of magnitude. This lithium oscillator strength is related to the radiative lifetime of atomic lithium and is used as a benchmark for atomic clocks and measurements of fundamental constants.
  3. the a-state of KLi: where the MLR was used to build an analytic global potential successfully despite there only being a small amount of levels observed near the top of the potential.
<span class="mw-page-title-main">Calcium monohydride</span> Chemical compound

Calcium monohydride is a molecule composed of calcium and hydrogen with formula CaH. It can be found in stars as a gas formed when calcium atoms are present with hydrogen atoms.

<span class="mw-page-title-main">Magnesium monohydride</span> Chemical compound

Magnesium monohydride is a molecular gas with formula MgH that exists at high temperatures, such as the atmospheres of the Sun and stars. It was originally known as magnesium hydride, although that name is now more commonly used when referring to the similar chemical magnesium dihydride.

<span class="mw-page-title-main">Nitrogen difluoride</span> Chemical compound

Nitrogen difluoride, also known as difluoroamino, is a reactive radical molecule with formula NF2. This small molecule is in equilibrium with its dimer dinitrogen tetrafluoride.

Argon compounds, the chemical compounds that contain the element argon, are rarely encountered due to the inertness of the argon atom. However, compounds of argon have been detected in inert gas matrix isolation, cold gases, and plasmas, and molecular ions containing argon have been made and also detected in space. One solid interstitial compound of argon, Ar1C60 is stable at room temperature. Ar1C60 was discovered by the CSIRO.

<span class="mw-page-title-main">Argonium</span> Chemical compound

Argonium (also called the argon hydride cation, the hydridoargon(1+) ion, or protonated argon; chemical formula ArH+) is a cation combining a proton and an argon atom. It can be made in an electric discharge, and was the first noble gas molecular ion to be found in interstellar space.

<span class="mw-page-title-main">Dirubidium</span> Chemical compound

Dirubidium is a molecular substance containing two atoms of rubidium found in rubidium vapour. Dirubidium has two active valence electrons. It is studied both in theory and with experiment. The rubidium trimer has also been observed.

Cyanophosphaethyne is an unstable molecular compound with structural formula N≡C–C≡P. It can be considered as cyanogen with one nitrogen atom replaced by phosphorus. It has been made as a dilute gas. Cyanophosphaethyne has been tentatively detected in the interstellar medium. Other structural isomers, such as C≡N–C≡P (isocyanophosphapropyne), C≡C-N≡P (azaphosphadicarbon), and N≡C–P=C (isocyanophosphavinylidene), have not been observed. The molecule has linear molecular geometry.

<span class="mw-page-title-main">Aluminium monohydroxide</span> Chemical compound

Hydroxyaluminium(I), also known as Aluminium(I) hydroxide, is an inorganic chemical with molecular formula AlOH. It consists of aluminium in the +1 oxidation state paired with a single hydroxide. It has been detected as a molecular substance in the envelope of an oxygen-rich red supergiant star, a place where substances containing metals or hydroxides are thought to be rare.

References

  1. 1 2 3 NIOSH Pocket Guide to Chemical Hazards. "#0054". National Institute for Occupational Safety and Health (NIOSH).
  2. Dattani, Nikesh S. (2015). "Beryllium monohydride (BeH): Where we are now, after 86years of spectroscopy". Journal of Molecular Spectroscopy. 311: 76–83. arXiv: 1408.3301 . Bibcode:2015JMoSp.311...76D. doi:10.1016/j.jms.2014.09.005. S2CID   118542048.
  3. 1 2 3 4 Dattani, Nikesh S. (2015). "Beryllium monohydride (BeH): Where we are now, after 86 years of spectroscopy". Journal of Molecular Spectroscopy. 311: 76–83. arXiv: 1408.3301 . Bibcode:2015JMoSp.311...76D. doi:10.1016/j.jms.2014.09.005. S2CID   118542048.
  4. Thomas J. Tague Jr., Lester Andrews (1993). "Reactions of beryllium atoms with hydrogen. Matrix infrared spectra of novel product molecules". J. Am. Chem. Soc. 115 (25): 12111–12116. doi:10.1021/ja00078a057..