Beryllium sulfate

Last updated • 1 min readFrom Wikipedia, The Free Encyclopedia
Beryllium sulfate
Beryllium sulfate.svg
Beryllium sulfate 4 hydrate.jpg
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.033.478 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 236-842-2
PubChem CID
RTECS number
  • DS4800000
UNII
  • InChI=1S/Be.H2O4S/c;1-5(2,3)4/h;(H2,1,2,3,4)/q+2;/p-2 Yes check.svgY
    Key: KQHXBDOEECKORE-UHFFFAOYSA-L Yes check.svgY
  • InChI=1/Be.H2O4S/c;1-5(2,3)4/h;(H2,1,2,3,4)/q+2;/p-2
    Key: KQHXBDOEECKORE-NUQVWONBAA
  • anhydrous:[Be+2].[O-]S([O-])(=O)=O
  • tetrahydrate:[OH2+][Be-2]([OH2+])([OH2+])[OH2+].[O-]S([O-])(=O)=O
Properties [1]
BeSO4
Molar mass 105.075 g/mol (anhydrous)
177.136 g/mol (tetrahydrate)
Appearancewhite solid
Odor odorless
Density 2.44 g/cm3 (anhydrous)
1.71 g/cm3 (tetrahydrate)
Melting point 110 °C (230 °F; 383 K) (tetrahydrate, −2H2O)
400 °C (dihydrate, dehydr.)
550–600 decomposes
Boiling point 2,500 °C (4,530 °F; 2,770 K) (anhydrate)
580 °C (tetrahydrate)
36.2 g/100 mL (0 °C)
40.0 g/100 mL (20 °C)
54.3 g/100 mL (60 °C)
Solubility insoluble in alcohol
1.4374 (tetrahydrate)
Thermochemistry
Std molar
entropy
(S298)
90 J/mol K
-1197 kJ/mol
-1088 kJ/mol
Hazards
GHS labelling:
GHS-pictogram-skull.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
Danger
H301, H315, H317, H319, H330, H335, H350, H372, H411
Flash point Non-flammable
Lethal dose or concentration (LD, LC):
82 mg/kg (rat, oral)
80 mg/kg (mouse, oral) [2]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 0.002 mg/m3
C 0.005 mg/m3 (30 minutes), with a maximum peak of 0.025 mg/m3 (as Be) [3]
REL (Recommended)
Ca C 0.0005 mg/m3 (as Be) [3]
IDLH (Immediate danger)
Ca [4 mg/m3 (as Be)] [3]
Safety data sheet (SDS) ICSC 1351
Related compounds
Other cations
Magnesium sulfate
Calcium sulfate
Strontium sulfate
Barium sulfate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Beryllium sulfate normally encountered as the tetrahydrate, [Be(H2O)4]SO4 is a white crystalline solid. It was first isolated in 1815 by Jons Jakob Berzelius. [4] Beryllium sulfate may be prepared by treating an aqueous solution of many beryllium salts with sulfuric acid, followed by evaporation of the solution and crystallization. The hydrated product may be converted to anhydrous salt by heating at 400 °C. [5]

Contents

Structure

According to X-ray crystallography the tetrahydrate contains a tetrahedral Be(OH2)42+ unit and sulfate anions. The small size of the Be2+ cation determines the number of water molecules that can be coordinated. [6] In contrast, the analogous magnesium salt, MgSO4·6H2O contains an octahedral Mg(OH2)62+ unit. [7] The existence of the tetrahedral [Be(OH2)4]2+ ion in aqueous solutions of beryllium nitrate and beryllium chloride has been confirmed by vibrational spectroscopy, as indicated by the totally symmetric BeO4 mode attt 531 cm−1. This band is absent in beryllium sulfate, and the sulfate modes are perturbed. The data support the existence of Be(OH2)3OSO3. [8]

The anhydrous compound has a structure similar to that of boron phosphate. The structure contains alternating tetrahedrally coordinated Be and S and each oxygen is 2 coordinate (Be-O-S). The Be-O distance is 156 pm and the S-O distance is 150 pm. [9]

A mixture of beryllium and radium sulfate was used as the neutron source in the discovery of nuclear fission.

Related Research Articles

<span class="mw-page-title-main">Iron(II) sulfate</span> Chemical compound

Iron(II) sulfate (British English: iron(II) sulphate) or ferrous sulfate denotes a range of salts with the formula FeSO4·xH2O. These compounds exist most commonly as the heptahydrate (x = 7) but several values for x are known. The hydrated form is used medically to treat or prevent iron deficiency, and also for industrial applications. Known since ancient times as copperas and as green vitriol (vitriol is an archaic name for sulfate), the blue-green heptahydrate (hydrate with 7 molecules of water) is the most common form of this material. All the iron(II) sulfates dissolve in water to give the same aquo complex [Fe(H2O)6]2+, which has octahedral molecular geometry and is paramagnetic. The name copperas dates from times when the copper(II) sulfate was known as blue copperas, and perhaps in analogy, iron(II) and zinc sulfate were known respectively as green and white copperas.

<span class="mw-page-title-main">Copper(II) sulfate</span> Chemical compound

Copper(II) sulfate is an inorganic compound with the chemical formula CuSO4. It forms hydrates CuSO4·nH2O, where n can range from 1 to 7. The pentahydrate (n = 5), a bright blue crystal, is the most commonly encountered hydrate of copper(II) sulfate, while its anhydrous form is white. Older names for the pentahydrate include blue vitriol, bluestone, vitriol of copper, and Roman vitriol. It exothermically dissolves in water to give the aquo complex [Cu(H2O)6]2+, which has octahedral molecular geometry. The structure of the solid pentahydrate reveals a polymeric structure wherein copper is again octahedral but bound to four water ligands. The Cu(II)(H2O)4 centers are interconnected by sulfate anions to form chains.

<span class="mw-page-title-main">Zinc sulfate</span> Chemical compound

Zinc sulfate describes a family of inorganic compounds with the formula ZnSO4(H2O)x. All are colorless solids. The most common form includes water of crystallization as the heptahydrate, with the formula ZnSO4·7H2O. As early as the 16th century it was prepared on the large scale, and was historically known as "white vitriol" (the name was used, for example, in 1620s by the collective writing under the pseudonym of Basil Valentine). Zinc sulfate and its hydrates are colourless solids.

<span class="mw-page-title-main">Calcium sulfate</span> Laboratory and industrial chemical

Calcium sulfate (or calcium sulphate) is the inorganic compound with the formula CaSO4 and related hydrates. In the form of γ-anhydrite (the anhydrous form), it is used as a desiccant. One particular hydrate is better known as plaster of Paris, and another occurs naturally as the mineral gypsum. It has many uses in industry. All forms are white solids that are poorly soluble in water. Calcium sulfate causes permanent hardness in water.

<span class="mw-page-title-main">Barium chloride</span> Chemical compound

Barium chloride is an inorganic compound with the formula BaCl2. It is one of the most common water-soluble salts of barium. Like most other water-soluble barium salts, it is a white powder, highly toxic, and imparts a yellow-green coloration to a flame. It is also hygroscopic, converting to the dihydrate BaCl2·2H2O, which are colourless crystals with a bitter salty taste. It has limited use in the laboratory and industry.

<span class="mw-page-title-main">Cadmium sulfate</span> Chemical compound

Cadmium sulfate is the name of a series of related inorganic compounds with the formula CdSO4·xH2O. The most common form is the monohydrate CdSO4·H2O, but two other forms are known CdSO4·83H2O and the anhydrous salt (CdSO4). All salts are colourless and highly soluble in water.

In chemistry, water(s) of crystallization or water(s) of hydration are water molecules that are present inside crystals. Water is often incorporated in the formation of crystals from aqueous solutions. In some contexts, water of crystallization is the total mass of water in a substance at a given temperature and is mostly present in a definite (stoichiometric) ratio. Classically, "water of crystallization" refers to water that is found in the crystalline framework of a metal complex or a salt, which is not directly bonded to the metal cation.

<span class="mw-page-title-main">Chromium(III) chloride</span> Chemical compound

Chromium(III) chloride (also called chromic chloride) is an inorganic chemical compound with the chemical formula CrCl3. It forms several hydrates with the formula CrCl3·nH2O, among which are hydrates where n can be 5 (chromium(III) chloride pentahydrate CrCl3·5H2O) or 6 (chromium(III) chloride hexahydrate CrCl3·6H2O). The anhydrous compound with the formula CrCl3 are violet crystals, while the most common form of the chromium(III) chloride are the dark green crystals of hexahydrate, CrCl3·6H2O. Chromium chlorides find use as catalysts and as precursors to dyes for wool.

<span class="mw-page-title-main">Cadmium chloride</span> Chemical compound

Cadmium chloride is a white crystalline compound of cadmium and chloride, with the formula CdCl2. This salt is a hygroscopic solid that is highly soluble in water and slightly soluble in alcohol. The crystal structure of cadmium chloride (described below), is a reference for describing other crystal structures. Also known are CdCl2•H2O and the hemipentahydrate CdCl2•2.5H2O.

<span class="mw-page-title-main">Beryllium hydroxide</span> Chemical compound

Beryllium hydroxide, Be(OH)2, is an amphoteric hydroxide, dissolving in both acids and alkalis. Industrially, it is produced as a by-product in the extraction of beryllium metal from the ores beryl and bertrandite. The natural pure beryllium hydroxide is rare (in form of the mineral behoite, orthorhombic) or very rare (clinobehoite, monoclinic). When alkali is added to beryllium salt solutions the α-form (a gel) is formed. If this left to stand or boiled, the rhombic β-form precipitates. This has the same structure as zinc hydroxide, Zn(OH)2, with tetrahedral beryllium centers.

Indium(III) sulfate (In2(SO4)3) is a sulfate salt of the metal indium. It is a sesquisulfate, meaning that the sulfate group occurs 11/2 times as much as the metal. It may be formed by the reaction of indium, its oxide, or its carbonate with sulfuric acid. An excess of strong acid is required, otherwise insoluble basic salts are formed. As a solid indium sulfate can be anhydrous, or take the form of a pentahydrate with five water molecules or a nonahydrate with nine molecules of water. Indium sulfate is used in the production of indium or indium containing substances. Indium sulfate also can be found in basic salts, acidic salts or double salts including indium alum.

<span class="mw-page-title-main">Cadmium nitrate</span> Chemical compound

Cadmium nitrate describes any of the related members of a family of inorganic compounds with the general formula Cd(NO3)2·xH2O. The most commonly encountered form being the tetrahydrate.The anhydrous form is volatile, but the others are colourless crystalline solids that are deliquescent, tending to absorb enough moisture from the air to form an aqueous solution. Like other cadmium compounds, cadmium nitrate is known to be carcinogenic. According to X-ray crystallography, the tetrahydrate features octahedral Cd2+ centers bound to six oxygen ligands.

<span class="mw-page-title-main">Nickel(II) sulfate</span> Chemical compound

Nickel(II) sulfate, or just nickel sulfate, usually refers to the inorganic compound with the formula NiSO4(H2O)6. This highly soluble blue green coloured salt is a common source of the Ni2+ ion for electroplating. Approximately 40,000 tonnes were produced in 2005.

<span class="mw-page-title-main">Beryllium chloride</span> Chemical compound

Beryllium chloride is an inorganic compound with the formula BeCl2. It is a colourless, hygroscopic solid that dissolves well in many polar solvents. Its properties are similar to those of aluminium chloride, due to beryllium's diagonal relationship with aluminium.

<span class="mw-page-title-main">Iron(III) sulfate</span> Chemical compound

Iron(III) sulfate (or ferric sulfate), is a family of inorganic compounds with the formula Fe2(SO4)3(H2O)n. A variety of hydrates are known, including the most commonly encountered form of "ferric sulfate". Solutions are used in dyeing as a mordant, and as a coagulant for industrial wastes. Solutions of ferric sulfate are also used in the processing of aluminum and steel.

<span class="mw-page-title-main">Chromium(III) sulfate</span> Chemical compound

Chromium(III) sulfate usually refers to the inorganic compounds with the formula Cr2(SO4)3.x(H2O), where x can range from 0 to 18. Additionally, ill-defined but commercially important "basic chromium sulfates" are known. These salts are usually either violet or green solids that are soluble in water. It is commonly used in tanning leather.

<span class="mw-page-title-main">Beryllium carbonate</span> Chemical compound

Beryllium carbonate is a chemical compound with the chemical formula BeCO3.

<span class="mw-page-title-main">Copper(II) phosphate</span> Chemical compound

Copper(II) phosphate are inorganic compounds with the formula Cu3(PO4)2. They can be regarded as the cupric salts of phosphoric acid. Anhydrous copper(II) phosphate and a trihydrate are blue solids.

<span class="mw-page-title-main">Zirconium(IV) sulfate</span> Chemical compound

Zirconium(IV) sulfate is the name for a family of inorganic salts with the formula Zr(SO4)2(H2O)n where n = 0, 4, 5, 7. These species are related by the degree of hydration. They are white or colourless solids that are soluble in water.

<span class="mw-page-title-main">Chromium(II) sulfate</span> Chemical compound

Chromium(II) sulfate is an inorganic compound with the chemical formula CrSO4. It often comes as hydrates CrSO4·nH2O. Several hydrated salts are known. The pentahydrate CrSO4·5H2O is a blue solid that dissolves readily in water. Solutions of chromium(II) are easily oxidized by air to Cr(III) species. Solutions of Cr(II) are used as specialized reducing agents of value in organic synthesis.

References

  1. Weast, Robert C., ed. (1981). CRC Handbook of Chemistry and Physics (62nd ed.). Boca Raton, FL: CRC Press. p. B-82. ISBN   0-8493-0462-8..
  2. "Beryllium compounds (as Be)". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  3. 1 2 3 NIOSH Pocket Guide to Chemical Hazards. "#0054". National Institute for Occupational Safety and Health (NIOSH).
  4. Lathrop Parsons, Charles (1909), The Chemistry and Literature of Beryllium, London, pp. 29–33, ISBN   9780559264160 {{citation}}: CS1 maint: location missing publisher (link).
  5. Patnaik, Pradyot (2002), Handbook of Inorganic Chemicals, McGraw-Hill, ISBN   0-07-049439-8 .
  6. Kellersohn, T.; Delaplane, R. G.; Olovsson, I. (1994). "The synergetic effect in beryllium sulfate tetrahydrate – an experimental electron-density study". Acta Crystallographica Section B: Structural Science. 50 (3): 316–326. doi:10.1107/S010876819400039X.
  7. Wells A.F. (1984) Structural Inorganic Chemistry 5th edition Oxford Science Publications ISBN   0-19-855370-6
  8. Rudolph, Wolfram W.; Fischer, Dieter; Irmer, Gert; Pye, Cory C. (2009). "Hydration of Beryllium(II) in Aqueous Solutions of Common Inorganic Salts. A Combined Vibrational Spectroscopic and ab initio Molecular Orbital Study". Dalton Transactions (33): 6513–6527. doi:10.1039/B902481F. PMID   19672497.
  9. Grund, Alfred (1955). "Die Kristallstruktur von BeSO4". Tschermaks Mineralogische und Petrographische Mitteilungen. 5 (3): 227–230. Bibcode:1955MinPe...5..227G. doi:10.1007/BF01191066. ISSN   0041-3763.