Phosphate sulfate

Last updated

The phosphate sulfates are mixed anion compounds containing both phosphate and sulfate ions. Related compounds include the arsenate sulfates, phosphate selenates, and arsenate selenates.

Contents

Some hydrogen phosphate sulfates are superprotonic conductors.

List

chemmwcrystal systemspace groupunit cellvolumedensitycommentreferences
Sanjuanite Al2(PO4)(SO4)(OH)·9H2O [1]
Hotsonite Al11(SO4)3(PO4)2(OH)21 · 16H2Otriclinica=11.23, b=11.66 c=10.55 α=112° 32′, β=107° 32′ γ=64° 27′refract: α = 1.519 γ = 1.521 [2]
Arangasite Al2F(PO4)(SO4)·9H2OmonoclinicP2/aa = 7.073, b = 9.634, c = 10.827, β = 100.40°, Z = 2725.7 [3]
peisleyiteNa3Al16(SO4)2(PO4)10(OH)17 · 20H2Omonoclinica 13.31, b 12.62, c 23.15, β 110.0°, Z = 2discredited [4]
peisleyiteNa2Al9[(P,S)O4]8(OH)6·28H2OtriclinicP1a = 9.28, b = 11.98, c = 13.25, α = 91.3, β = 75.6, γ = 67.67°, Z = 41308 [5]
Woodhouseite CaAl3(PO4)(SO4)(OH)6trigonalR3ma = 6.993, c = 16.386693.953.0Uniaxial (+) nω = 1.636 nε = 1.647 Birefringence: δ = 0.011 [6]
Ardéalite Ca2H(PO4)(SO4)•4H2Omonoclinica = 5.721, b = 30.95, c = 6.265, β= 117.26° Z = 4986.112.32 [7]
Destinezite Diadochite Fe2(PO4)(SO4)(OH)•6H2OtriclinicP1a = 9.570, b = 9.716, c = 7.313, α = 98.74°, β = 107.90°, γ = 63.86° Z = 2 [8]
bohuslaviteFeIII4(PO4)3(SO4)(OH)(H2O)10·nH2O (5 ≤ n ≤ 14)triclinicP1a = 13.376 b = 13.338 c = 10.863 α = 92.80, β = 91.03, γ = 119.92°, Z = 21675.7pink [9]
Borickyite (Ca,Mg)(Fe3+,Al)4(PO4,SO4,CO3)(OH)8·3–7.5H2O [10]
Camaronesite[Fe3+(H2O)2(PO3OH)]2(SO4)·1–2H2OtrigonalR32a = 9.0833, c = 42.944, Z = 93068.5 [11]
Fe3+4(PO4)3(SO4)(OH)·18H2OtriclinicP1a=13.376, b 13.338, c 10.863, α 92.80, β 91.03, γ 119.92°1675.7 [12]
vanderheydenite Zn6(PO4)2(SO4)(OH)4·7H2OmonoclinicP21/na = 6.204 b = 19.619, c = 7.782, β = 90.67°947.1biaxial (–) α = 1.565, β = 1.580 γ = 1.582. 2V = 39.8° [13]
Svanbergite SrAl3(PO4)(SO4)(OH)6trigonalR3ma = 6.97, c = 16.59 Z=3697.983.2Uniaxial (+) nω = 1.631 - 1.635 nε = 1.646 - 1.649 Birefringence: δ = 0.015 [14]
BirchiteCd2Cu2(PO4)2(SO4) ·5H2Oa = 10.489 b = 20.901 c = 6.155 Z=41349.63.647biaxial positive,

nα = 1.624, nβ = 1.636, nγ = 1.669, 2Vcalc = +63°.

[15]
Corkite PbFe3(OH)6SO4PO4trigonalR3ma = 7.32, c = 17.02 Z=3781.24.295Uniaxial (-) nω = 1.930 nε = 1.930 n = 1.93 - 1.96 Birefringence 0.03 [16]
BaAl3(PO4)(SO4)(OH)6trigonalR3ma = , c = Z=3 [17]
hinsdalite (Pb,Sr)Al3(PO4)(SO4)(OH)6 [18]
Tsumebite Pb2Cu(PO4,SO4)(OH) [19]
Delvauxite CaFe43+(PO4,SO4)2(OH)8·4–6H2O [20]
Rossiantonite Al3(PO4)(SO4)2(OH)2(H2O)10·4H2OtriclinicP1a = 10.3410, b = 10.9600, c = 11.1446, α = 86.985, β = 65.727, γ = 75.064°, Z = 21110.5 [21]
Schlossmacherite (H3O,Ca)Al3(AsO4,PO4,SO4)2(OH)6 [22]
Arthurite Cu(Fe3+)2(AsO4,PO4,SO4)2(O,OH)2·4(H2O) [23]
cobaltarthurite [23]
Phosphoinnelite Ba4Na3Ti3Si4O14(PO4,SO4)2(O,F)3triclinicP1?a = 5.38, b = 7.10, c = 14.76; α = 99.00°, β = 94.94°, γ = 90.14° Z = 15553.82biaxial (+), α = 1.730, β = 1.745, and γ = 1.764, 2V 90° [24]
Francolite (Ca, Mg, Sr, Na)10(PO4, SO4, CO3)6F2–3 [25]
Al4(UO2)2(PO4)4(SO4)(OH)2 · 18H2O [26]
Al4(UO2)2(PO4)4(SO4)(OH)2 · 20H2O [26]
CoconinoiteFe2Al2(UO2)2(PO4)4(SO4)(OH)2 · 20H2OmonoclinicC2/ca =12.45, b = 12.96, c = 17.22, β = 105.7° [26]
xiangjiangite Fe2Al2(UO2)2(PO4)4(SO4)(OH)2 · 22H2Otetragonala = 7.17 Å, b = 7.17 Å, c = 22.22 Å Z=11,142Biaxial (-) nα = 1.558 nβ = 1.576 nγ = 1.593 2V: 87° [27]

Artificial

chemmwcrystal systemspace groupunit cell Åvolumedensitycommentreferences
[H4N+]2·HSO4·H2PO4 [28] [29]
NH4(HSO4)0.45(H2PO4)0.55orthorhombic [30]
18-crown[6]·[NH4][H2PO4]0.5[HSO4]0.5·H2OorthrhombicF2dda=8.710 b= 28.868 c=31.206 Z=1678461.346dehydrate at 70° [31]
[(C2H5)4N+]2·HSO4·H2PO4MonoclinicC2/ca = 28.0787 b = 11.8671 c = 14.1533 β = 100.739° Z=84633.461.303colourless; decompose at 353K [32]
(NH2CH2COOH)3(H2SO4)0.7(H3PO4)0.3monocliniccalled TGSP; colourless; ferroelectric, curie point 51 °C; pyroelectric
Na(HSO4)(H3PO4)monoclinicP 21a = 5.449, b = 6.832, c = 8.718, β = 95.88°, Z = 2 322.8 [33]
K2(HSO4)(H2PO4)monoclinicP 21/ca = 11.150, b = 7.371, c = 9.436, β = 92.29°, Z = 4 774.9 [33]
K4(HSO4)3(H2PO4)triclinicP 1a = 7.217, b = 7.521, c = 7.574, α = 71.52°, β = 88.28°, γ = 86.20°, Z = 1 389.1 [33]
K4(PO2F2)2(S2O7)534.46monoclinicC2/ca = 13.00, b = 7.543, c = 19.01, β = 130.07°, Z = 41426.52.489colourless; pyrosulfate + difluorophosphate [34]
K3[O3SOPO2OSO3] [35]
H1−xTi2(PO4)3−x(SO4)x (x=0.5–1) [36]
Na2MgTi(SO4)(PO4)2trigonalR3ca=8.4796 c=21.8091 Z=61358.12.818 [37]
K2MgTi(SO4)(PO4)2cubicP213a=9.8743 Z=4962.842.872 [37]
Ca10-xNax(PO4)6-x(SO4)xF2monoclinic [38]
NaFe2(PO4)(SO4)2hexagonalR3ca=8.4243 c=21.973 [39]
NaFe1.4V0.6(PO4)(SO4)2 [40]
[Ni(C14H10N4)3]4(PO4)2(SO4) (C14H10N4=2,2'-bi-1H-benzimidazole)3331.96cubicI43da = 24.964 Z=4155581.423green [41]
Rb2(HSO4)(H2PO4)monoclinicP21/na=7.448, b=7.552, c=7.632, β=100.47°, Z=2422.1 [42] [43]
Rb2(HSO4)(H2PO4)monoclinicP21/ca=11.555, b=7.536, c=9.593, β=91.56, Z=4853.0at 160K [43]
Rb4(HSO4)3(H2PO4)orthorhombicP21212a=7.612, b=14.795, c=7.446, Z=2838.6 [42] [43]
18-crown[6]·Rb[H2PO4]0.5[HSO4]0.5·3H2OmonoclinicC2/ca=19.802 b=8.447 c=25.777 β=101.00° Z=842321.572dehydrate at 70° [31]
Rb2MgTi(SO4)(PO4)2 [37]
Sr4(PO4)2SO4 [44]
NaZrMg(PO4)(SO4)2hexagonalR3c [45]
NaZrCo(PO4)(SO4)2hexagonalR3c [45]
NaZrNi(PO4)(SO4)2hexagonalR3c [45]
NaZrCu(PO4)(SO4)2hexagonalR3c [45]
NaZrZn(PO4)(SO4)2hexagonalR3c [45]
NaZrAl(PO4)2(SO4)hexagonalR3c [45]
NaZrFe(PO4)2(SO4)hexagonalR3c [45]
H3OSb2(SO4)2(PO4)triclinicP1a=5.134 b=7.908 c=12.855, α=81.401° β=87.253° γ=86.49° [46]
KSb2(SO4)2(PO4)triclinicP1a=5.1453 =7.9149 c=12.6146, α=82.054° β=87.715° γ=86.655° [46]
RbSb2(SO4)2(PO4)triclinicP1a=5.1531 b=7.957 c=12.845, α=81.801° β=87.676° γ=86.703° [46]
Cs2(HSO4)(H2PO4)cubicao=4.926>105 °C but can be supercooled [47]
Cs2(HSO4)(H2PO4)monoclinicP21/na = 7.856 b = 7.732 c = 7.827, β= 99.92° Z=2468.33.261can substitute 2.3% ammonium; proton conductivity at 110 °C is 3×10−3 Ω−1cm−1 [48] [49]
Cs3(HSO4)2(H2PO4)monoclinicC2/ca=19.824 b=7.859 c=19.047 β=100.20° Z=41387.23.302stable against water solution 298-313K; phase transition at 411K [50]
Cs4(HSO4)3(H2PO4)monoclinicC2/ca=19.945 b=7.8565 c=8.9949 β=100.119° Z=31387.53.301colourless [51] [52]
Cs5(HSO4)2(H2PO4)3cubicI43da=14.5668over 381K goes to tetragonal a=4.965 c=5.016 [53]
Cs6H(HSO4)3(H2PO4)4cubicI43da=14.47583033.383.236colourless [54]
Cs5(HSO4)3(H2PO4)2monoclinicC2/ca=34.07 Å,b=7.661,c=9.158,β=90.44°23903.198 [55]
18-crown[6]·Cs[H2PO4]0.5[HSO4]0.5·3H2OmonoclinicC2/ca=19.840 b=8.460 c=26.19 β=101.14 Z=843131.689dehydrate at 70° [31]
CsNH4(HSO4)(H2PO4) [56]
Cs3NH4(HSO4)3(H2PO4) [56]
Cs2MgTi(SO4)(PO4)2 [37]
Ba4(PO4)2SO4 [44]
NaBa6Zr(PO4)5SO4cubicI43da = 10.5449 Z=41172.54 eulytite mineral structure [44]
Ba2Sr2(PO4)2SO4 [44]
Ba3Sr(PO4)2SO4 [44]
Ce2O(HPO4)2(SO4). 4H2OCeIV [57]
Ce2O(HPO4)2.4(SO4)0.6. 2H2OCeIII [58]
[enH2]0.5[CeIII(PO4)(HSO4)(OH2)]monoclinicP21/aa=12.999 b=7.150 c=9.212 β=95.33cream colour [59]
KSr2Eu(PO4)2SO4 [44]
RbSr2Eu(PO4)2SO4 [44]
CsSr2Eu(PO4)2SO4 [44]
[enH2]0.5[Ho(HPO4)(SO4)(H2O)]monoclinicP21/aa = 12.938 b = 6.834 c = 9.100 β = 88.12° [60]
Pb2Mg2(PO4)2SO4 [44]
MgPb3(PO4)2(SO4)cubicI43da = 10.299 Z=41092.45.67 [61]
CaPb3(PO4)2(SO4)cubicI43da = 10.296 Z=41091.55.77 [61]
MnPb3(PO4)2(SO4)cubicI43da = 10.258 Z=41079.45.92 [61]
CoPb3(PO4)2(SO4)cubicI43da = 10.356 Z=41110.65.78 [61]
NiPb3(PO4)2(SO4)cubicI43da = 10.434 Z=41135.95.65 [61]
CuPb3(PO4)2(SO4)cubicI43da = 10.422 Z=41132.05.70 [61]
ZnPb3(PO4)2(SO4)cubicI43da = 10.449 Z=41140.85.67 [61]
CdPb3(PO4)2(SO4)cubicI43da = 10.315 Z=41097.56.17 [61]
SrPb3(PO4)2(SO4)cubicI43da = 10.369 Z=41114.85.93 [61]
Th2(PO4)2SO4·2 H2Odecompose 450 °C [62]

Organic derivatives

A catenated sulfophosphate has the sulfur and phosphorus joined by an oxygen atom. In biochemistry, metabolism of sulfate may use such a group, for example with adenosine-5'-phosphosulfate. [63]

Related Research Articles

In chemistry, water(s) of crystallization or water(s) of hydration are water molecules that are present inside crystals. Water is often incorporated in the formation of crystals from aqueous solutions. In some contexts, water of crystallization is the total mass of water in a substance at a given temperature and is mostly present in a definite (stoichiometric) ratio. Classically, "water of crystallization" refers to water that is found in the crystalline framework of a metal complex or a salt, which is not directly bonded to the metal cation.

Indium(III) sulfate (In2(SO4)3) is a sulfate salt of the metal indium. It is a sesquisulfate, meaning that the sulfate group occurs 11/2 times as much as the metal. It may be formed by the reaction of indium, its oxide, or its carbonate with sulfuric acid. An excess of strong acid is required, otherwise insoluble basic salts are formed. As a solid indium sulfate can be anhydrous, or take the form of a pentahydrate with five water molecules or a nonahydrate with nine molecules of water. Indium sulfate is used in the production of indium or indium containing substances. Indium sulfate also can be found in basic salts, acidic salts or double salts including indium alum.

<span class="mw-page-title-main">Thaumasite</span> Complex calcium silicate hydrate mineral

Thaumasite is a calcium silicate mineral, containing Si atoms in unusual octahedral configuration, with chemical formula Ca3Si(OH)6(CO3)(SO4)·12H2O, also sometimes more simply written as CaSiO3·CaCO3·CaSO4·15H2O.

<span class="mw-page-title-main">Szomolnokite</span>

Szomolnokite (Fe2+SO4·H2O) is a monoclinic iron sulfate mineral forming a complete solid solution with magnesium end-member kieserite (MgSO4·H2O). In 1877 szomolnokite's name was derived by Joseph Krenner from its type locality of oxidized sulfide ore containing iron in Szomolnok, Slovakia (Hungary at the time).

<span class="mw-page-title-main">Tsumebite</span>

Tsumebite is a rare phosphate mineral named in 1912 after the locality where it was first found, the Tsumeb mine in Namibia, well known to mineral collectors for the wide range of minerals found there. Tsumebite is a compound phosphate and sulfate of lead and copper, with hydroxyl, formula Pb2Cu(PO4)(SO4)(OH). There is a similar mineral called arsentsumebite, where the phosphate group PO4 is replaced by the arsenate group AsO4, giving the formula Pb2Cu(AsO4)(SO4)(OH). Both minerals are members of the brackebuschite group.

Langbeinites are a family of crystalline substances based on the structure of langbeinite with general formula M2M'2(SO4)3, where M is a large univalent cation, and M' is a small divalent cation. The sulfate group, SO2−4, can be substituted by other tetrahedral anions with a double negative charge such as tetrafluoroberyllate, selenate, chromate, molybdate, or tungstates. Although monofluorophosphates are predicted, they have not been described. By redistributing charges other anions with the same shape such as phosphate also form langbeinite structures. In these the M' atom must have a greater charge to balance the extra three negative charges.

<span class="mw-page-title-main">Caesium bisulfate</span> Chemical compound

Caesium bisulfate or cesium hydrogen sulfate is an inorganic compound with the formula CsHSO4. The caesium salt of bisulfate, it is a colorless solid obtained by combining Cs2SO4 and H2SO4.

Vanadium phosphates are inorganic compounds with the formula VOxPO4 as well related hydrates with the formula VOxPO4(H2O)n. Some of these compounds are used commercially as catalysts for oxidation reactions.

Solid acid fuel cells (SAFCs) are a class of fuel cells characterized by the use of a solid acid material as the electrolyte. Similar to proton exchange membrane fuel cells and solid oxide fuel cells, they extract electricity from the electrochemical conversion of hydrogen- and oxygen-containing gases, leaving only water as a byproduct. Current SAFC systems use hydrogen gas obtained from a range of different fuels, such as industrial-grade propane and diesel. They operate at mid-range temperatures, from 200 to 300 °C.

Sodium magnesium sulfate is a double sulfate of sodium and magnesium. There are a number of different stoichiometries and degrees of hydration with different crystal structures, and many are minerals. Members include:

Nickel is one of the metals that can form Tutton's salts. The singly charged ion can be any of the full range of potassium, rubidium, cesium, ammonium (), or thallium. As a mineral the ammonium nickel salt, (NH4)2Ni(SO4)2 · 6 H2O, can be called nickelboussingaultite. With sodium, the double sulfate is nickelblödite Na2Ni(SO4)2 · 4 H2O from the blödite family. Nickel can be substituted by other divalent metals of similar sized to make mixtures that crystallise in the same form.

The sulfate chlorides are double salts containing both sulfate (SO42–) and chloride (Cl) anions. They are distinct from the chlorosulfates, which have a chlorine atom attached to the sulfur as the ClSO3 anion.

The sulfate fluorides are double salts that contain both sulfate and fluoride anions. They are in the class of mixed anion compounds. Some of these minerals are deposited in fumaroles.

A sulfite sulfate is a chemical compound that contains both sulfite and sulfate anions [SO3]2− [SO4]2−. These compounds were discovered in the 1980s as calcium and rare earth element salts. Minerals in this class were later discovered. Minerals may have sulfite as an essential component, or have it substituted for another anion as in alloriite. The related ions [O3SOSO2]2− and [(O2SO)2SO2]2− may be produced in a reaction between sulfur dioxide and sulfate and exist in the solid form as tetramethyl ammonium salts. They have a significant partial pressure of sulfur dioxide.

The borophosphates are mixed anion compounds containing borate and phosphate anions, which may be joined together by a common oxygen atom. Compounds that contain water or hydroxy groups can also be included in the class of compounds.

<span class="mw-page-title-main">Fumarole mineral</span> Minerals which are deposited by fumarole exhalations

Fumarole minerals are minerals which are deposited by fumarole exhalations. They form when gases and compounds desublimate or precipitate out of condensates, forming mineral deposits. They are mostly associated with volcanoes following deposition from volcanic gas during an eruption or discharge from a volcanic vent or fumarole, but have been encountered on burning coal deposits as well. They can be black or multicoloured and are often unstable upon exposure to the atmosphere.

Borate phosphates are mixed anion compounds containing separate borate and phosphate anions. They are distinct from the borophosphates where the borate is linked to a phosphate via a common oxygen atom. The borate phosphates have a higher ratio of cations to number of borates and phosphates, as compared to the borophosphates.

Gallium(III) sulfate refers to the chemical compound, a salt, with the formula Ga2(SO4)3, or its hydrates Ga2(SO4)3·xH2O. Gallium metal dissolves in sulfuric acid to form solutions containing [Ga(OH2)6]3+ and SO42− ions. The octadecahydrate Ga2(SO4)3·18H2O crystallises from these solutions at room temperature. This hydrate loses water in stages when heated, forming the anhydrate Ga2(SO4)3 above 150 °C and completely above 310 °C. Anhydrous Ga2(SO4)3 is isostructural with iron(III) sulfate, crystallizing in the rhombohedral space group R3.

<span class="mw-page-title-main">Oxalate phosphate</span> Chemical compound containing oxalate and phosphate anions

The oxalate phosphates are chemical compounds containing oxalate and phosphate anions. They are also called oxalatophosphates or phosphate oxalates. Some oxalate-phosphate minerals found in bat guano deposits are known. Oxalate phosphates can form metal organic framework compounds.

Oxalate sulfates are mixed anion compounds containing oxalate and sulfate. They are mostly transparent, and any colour comes from the cations.

References

  1. Frost, Ray L.; Palmer, Sara J. (September 2011). "A vibrational spectroscopic study of the mixed anion mineral sanjuanite Al2(PO4)(SO4)(OH)·9H2O" (PDF). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 79 (5): 1210–1214. Bibcode:2011AcSpA..79.1210F. doi:10.1016/j.saa.2011.04.044. PMID   21646042.
  2. Beukes, Gerhard J.; Schoch, Aylva E.; Van der Westhuizen, Willem A.; Bok, Louis D. C.; Bruiyn, Hendrik (1984-10-01). "Hotsonite, a new hydrated aluminum-phosphate-sulphate from Pofadder, South Africa". American Mineralogist. 69 (9–10): 979–983. ISSN   0003-004X.
  3. Yakubovich, O. V.; Steele, I. M.; Chernyshev, V. V.; Zayakina, N. V.; Gamyanin, G. N.; Karimova, O. V. (August 2014). "The crystal structure of arangasite, Al 2 F(PO 4 )(SO 4 )·9H 2 O determined using low-temperature synchrotron data". Mineralogical Magazine. 78 (4): 889–903. Bibcode:2014MinM...78..889Y. doi:10.1180/minmag.2014.078.4.09. ISSN   0026-461X. S2CID   94078023.
  4. Pilkington, E. S.; Segnit, E. R.; Watts, J. A. (December 1982). "Peisleyite, a new sodium aluminium sulphate phosphate". Mineralogical Magazine. 46 (341): 449–452. Bibcode:1982MinM...46..449P. doi:10.1180/minmag.1982.046.341.07. ISSN   0026-461X. S2CID   129726668.
  5. Mills, S. J.; Ma, C.; Birch, W. D. (December 2011). "A contribution to understanding the complex nature of peisleyite". Mineralogical Magazine. 75 (6): 2733–2737. Bibcode:2011MinM...75.2733M. doi:10.1180/minmag.2011.075.6.2733. ISSN   0026-461X. S2CID   18661193.
  6. "Woodhouseite". www.mindat.org. Retrieved 2022-05-25.
  7. BALENZANO, F; DELL'ANNA, L.; DI PIERRO, M.; FIORE, S. (1982). "Ardealite, Ca2H(PO4) (SO4).4H2O, un rarissimo fosfato-solfato idrato di calcio: risultati mineralogici preliminari". Ardealite, Ca2H(PO4) (SO4).4H2O, Un Rarissimo Fosfato-solfato Idrato di Calcio: Risultati Mineralogici Preliminari. 38 (2): 899–900. ISSN   0037-8828.
  8. Peacor, Donald R. (1999). "Destinezite ("Diadochite"), Fe2(PO4)(SO4)(OH)·6H2O: Its Crystal Structure and Role as a Soil Mineral at Alum Cave Bluff, Tennessee†". Clays and Clay Minerals. 47 (1): 1–11. Bibcode:1999CCM....47....1P. doi: 10.1346/CCMN.1999.0470101 . ISSN   0009-8604. S2CID   98406559.
  9. Mauro, Daniela; Biagioni, Cristian; Bonaccorsi, Elena; Hålenius, Ulf; Pasero, Marco; Skogby, Henrik; Zaccarini, Federica; Sejkora, Jiří; Plášil, Jakub; Kampf, Anthony R.; Filip, Jan (2019-12-20). "Bohuslavite, Fe 4 3 + (PO4)3(SO4)(OH)(H2O)10·nH2O, a new hydrated iron phosphate-sulfate". European Journal of Mineralogy. 31 (5–6): 1033–1046. Bibcode:2019EJMin..31.1033M. doi:10.1127/ejm/2019/0031-2892. ISSN   0935-1221. S2CID   213555293.
  10. Frost, Ray L.; Palmer, Sara J.; Xi, Yunfei (June 2012). "Is the mineral borickyite (Ca,Mg)(Fe3+,Al)4(PO4,SO4,CO3)(OH)8·3–7.5H2O the same as delvauxite CaFe43+(PO4,SO4)2(OH)8·4–6H2O?". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 92: 377–381. Bibcode:2012AcSpA..92..377F. doi:10.1016/j.saa.2012.02.102. PMID   22446787.
  11. Kampf, A. R.; Mills, S. J.; Nash, B. P.; Housley, R. M.; Rossman, G. R.; Dini, M. (June 2013). "Camaronesite, [Fe 3+ (H 2 O) 2 (PO 3 OH)] 2 (SO 4 )·1–2H 2 O, a new phosphate-sulfate from the Camarones Valley, Chile, structurally related to taranakite". Mineralogical Magazine. 77 (4): 453–465. Bibcode:2013MinM...77..453K. doi:10.1180/minmag.2013.077.4.05. ISSN   0026-461X. S2CID   129777006.
  12. Mauro, D.; Biagioni, C.; Bonaccorsi, E.; Pasero, M.; Skogby, H.; Zaccarini, F. (2018). "A new iron (III) phosphate-sulfate from Apuan Alps (Tuscany, Italy): a difficult puzzle solved through a multi-technique approach". Congresso Sgi-Simp 2018: 521.
  13. Elliott, Peter; Kolitsch, Uwe (2018-10-31). "Description and crystal structure of vanderheydenite, Zn6(PO4)2(SO4)(OH)4·7H2O, a new mineral from Broken Hill, New South Wales, Australia". European Journal of Mineralogy. 30 (4): 835–840. Bibcode:2018EJMin..30..835E. doi:10.1127/ejm/2018/0030-2750. ISSN   0935-1221. S2CID   134655965.
  14. "Svanbergite". www.mindat.org. Retrieved 2022-05-25.
  15. Elliott, P.; Brugger, J.; Pring, A.; Cole, M. L.; Willis, A. C.; Kolitsch, U. (2008-05-01). "Birchite, a new mineral from Broken Hill, New South Wales, Australia: Description and structure refinement". American Mineralogist. 93 (5–6): 910–917. Bibcode:2008AmMin..93..910E. doi:10.2138/am.2008.2732. ISSN   0003-004X. S2CID   95773593.
  16. "Corkite". www.mindat.org. Retrieved 2022-05-25.
  17. Izbrodin, Ivan A.; Ripp, German S.; Doroshkevich, Anna G. (January 2011). "Aluminium phosphate and phosphate-sulphate minerals in kyanite schists of the Ichetuyskoye area, West Transbaikalia, Russia: crystal chemistry and evolution". Mineralogy and Petrology. 101 (1–2): 81–96. Bibcode:2011MinPe.101...81I. doi:10.1007/s00710-010-0135-5. ISSN   0930-0708. S2CID   129698260.
  18. Frost, Ray L.; Palmer, Sara J.; Xi, Yunfei (August 2011). "A vibrational spectroscopic study of the mineral hinsdalite (Pb,Sr)Al3(PO4)(SO4)(OH)6". Journal of Molecular Structure. 1001 (1–3): 43–48. Bibcode:2011JMoSt1001...43F. doi:10.1016/j.molstruc.2011.06.014.
  19. Frost, Ray L.; Palmer, Sara J. (September 2011). "Vibrational spectroscopic study of the mineral tsumebite Pb2Cu(PO4,SO4)(OH)". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 79 (5): 1794–1797. Bibcode:2011AcSpA..79.1794F. doi:10.1016/j.saa.2011.05.058. PMID   21680232.
  20. Frost, Ray L.; Palmer, Sara J. (April 2011). "A Raman and infrared spectroscopic study of the mineral delvauxite CaFe43+(PO4,SO4)2(OH)8·4–6H2O—A 'colloidal' mineral". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 78 (4): 1250–1254. Bibcode:2011AcSpA..78.1250F. doi:10.1016/j.saa.2010.12.039. PMID   21277823.
  21. Galli, E.; Brigatti, M. F.; Malferrari, D.; Sauro, F.; De Waele, J. (2013-10-01). "Rossiantonite, Al3(PO4)(SO4)2(OH)2(H2O)10{middle dot}4H2O, a new hydrated aluminum phosphate-sulfate mineral from Chimanta massif, Venezuela: Description and crystal structure". American Mineralogist. 98 (10): 1906–1913. doi:10.2138/am.2013.4393. hdl:11585/185099. ISSN   0003-004X. S2CID   102265894.
  22. Frost, Ray L.; Palmer, Sara J.; Xi, Yunfei (February 2012). "Raman spectroscopy of the multi-anion mineral schlossmacherite (H3O,Ca)Al3(AsO4,PO4,SO4)2(OH)6". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 87: 209–213. Bibcode:2012AcSpA..87..209F. doi:10.1016/j.saa.2011.11.040. PMID   22169025.
  23. 1 2 Palmer, Sara J.; Frost, Ray L. (May 2011). "The structure of the mineral arthurite (AsO4,PO4,SO4)2(O,OH)2·4H2O – A Raman spectroscopic study". Journal of Molecular Structure. 994 (1–3): 283–288. doi:10.1016/j.molstruc.2011.03.034.
  24. Pekov, I. V.; Chukanov, N. V.; Kulikova, I. M.; Belakovsky, D. I. (December 2007). "Phosphoinnelite, Ba4Na3Ti3Si4O14(PO4,SO4)2(O,F)3, a new mineral species from peralkaline pegmatite of the Kovdor pluton, Kola Peninsula". Geology of Ore Deposits. 49 (7): 530–536. Bibcode:2007GeoOD..49..530P. doi:10.1134/S1075701507070070. ISSN   1075-7015. S2CID   129616074.
  25. Benmore, Richard A.; Coleman, Max L.; McArthur, John M. (April 1983). "Origin of sedimentary francolite from its sulphur and carbon isotope composition". Nature. 302 (5908): 516–518. Bibcode:1983Natur.302..516B. doi:10.1038/302516a0. ISSN   0028-0836. S2CID   4350036.
  26. 1 2 3 Frost, Ray L.; Palmer, Sara J; Čejka, Jiří (September 2011). "The Application of Raman Spectroscopy to the Study of the Uranyl Mineral Coconinoite Fe 2 Al 2 (UO 2 ) 2 (PO 4 ) 4 (SO 4 )(OH) 2 · 20H 2 O". Spectroscopy Letters. 44 (6): 381–387. Bibcode:2011SpecL..44..381F. doi:10.1080/00387010.2010.551445. ISSN   0038-7010. S2CID   96609983.
  27. "Xiangjiangite". www.mindat.org. Retrieved 2022-07-13.
  28. BEKTUROV, AB; NA, DZHUMAGULOVA; ZK, KAIPOVA; RS, ERZHANOVA; VI, LITVINENKO (1980). "RECHERCHES DANS LE DOMAINE DES SULFATOPHOSPHATES. 5. TRANSFORMATIONS THERMIQUES DES MELANGES DE PHOSPHATE ET DE SULFATE D'AMMONIUM MONOSUBSTITUES ET D'HYDROSULFATE-DIHYDRO-PHOSPHATE D'AMMONIUM (NH4)2(HSO4.H2PO4)". Recherches dans le Domaine des Sulfatophosphates. 5. Transformations Thermiques des Melanges de Phosphate et de Sulfate d'Ammonium Monosubstitues et d'Hydrosulfate-Dihydro-Phosphate d'Ammonium (Nh4)2(Hso4.H2Po4).
  29. PubChem. "Diammonium phosphate sulphate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-07-13.
  30. Bouattour, S.; Mhiri, T.; Kolsi, A. W.; Romain, F. (October 1999). "Dielectric, dsc and raman studies of the phase transitions in NH 4 (HSO 4 ) 0.45 (H 2 PO 4 ) 0.55 mixed crystals". Phase Transitions. 70 (1): 19–28. Bibcode:1999PhaTr..70...19B. doi:10.1080/01411599908241337. ISSN   0141-1594.
  31. 1 2 3 Braga, Dario; Modena, Enrico; Polito, Marco; Rubini, Katia; Grepioni, Fabrizia (2008). "Crystal forms of highly "dynamic" 18-crown[6] complexes with M[HSO4] and M[H2PO4] (M+ = NH4+, Rb+, Cs+): thermal behaviour and solid-state preparation". New Journal of Chemistry. 32 (10): 1718. doi:10.1039/b805203d. ISSN   1144-0546.
  32. Fábry, Jan; Krupková, Radmila; Císařová, Ivana; Jurek, Karel (2003-03-15). "Bis(tetraethylammonium) hydrogensulfate dihydrogenphosphate at 292 and 150 K". Acta Crystallographica Section C: Crystal Structure Communications. 59 (3): o120–o123. doi:10.1107/S0108270103001471. ISSN   0108-2701. PMID   12711782.
  33. 1 2 3 Stiewe, A.; Kemnitz, E. (2000). "Synthese und Kristallstruktur von K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4) und Na(HSO4)(H3PO4)". Zeitschrift für Anorganische und Allgemeine Chemie. 626 (9): 2004–2011. doi:10.1002/1521-3749(200009)626:9<2004::AID-ZAAC2004>3.0.CO;2-0.
  34. Zhang, Wenyao; Jin, Wenqi; Yang, Zhihua; Pan, Shilie (2020). "K 4 (PO 2 F 2 ) 2 (S 2 O 7 ): first fluorooxophosphorsulfate with mixed-anion [S 2 O 7 ] 2− and [PO 2 F 2 ] − groups". Dalton Transactions. 49 (48): 17658–17664. doi:10.1039/D0DT03307C. ISSN   1477-9226. PMID   33231582. S2CID   227157666.
  35. von Lampe, F. (June 1969). "Darstellung eines kristallinen Sulfatophosphats, des Kalium-di-sulfato-monophosphats K3[O3SO?PO2?OSO3]". Zeitschrift für anorganische und allgemeine Chemie (in German). 367 (3–4): 170–188. doi:10.1002/zaac.19693670309. ISSN   0044-2313.
  36. Mieritz, Daniel; Davidowski, Stephen K.; Seo, Dong-Kyun (October 2016). "Accessing alkali-free NASICON-type compounds through mixed oxoanion sol–gel chemistry: Hydrogen titanium phosphate sulfate, H1−Ti2(PO4)3−(SO4) (x=0.5–1)". Journal of Solid State Chemistry. 242: 116–125. Bibcode:2016JSSCh.242..116M. doi: 10.1016/j.jssc.2016.02.007 .
  37. 1 2 3 4 Kanunov, A. E.; Asabina, E. A.; Orlova, A. I. (January 2016). "Preparation and X-ray diffraction study of phosphate sulfates M2MgTi(SO4)(PO4)2". Russian Journal of General Chemistry. 86 (1): 18–25. doi:10.1134/S1070363216010047. ISSN   1070-3632. S2CID   102011872.
  38. Apella, M. C.; Baran, E. J. (1981-05-01). "Zur Kristallstruktur der gemischten Phosphat/Sulfat-Fluorapatite / On the Crystal Structure of Mixed Phosphate/Sulfate Fluoroapatites". Zeitschrift für Naturforschung B. 36 (5): 644–645. doi: 10.1515/znb-1981-0517 . ISSN   1865-7117. S2CID   97118097.
  39. Ben Yahia, Hamdi; Essehli, Rachid; Amin, Ruhul; Boulahya, Khalid; Okumura, Toyoki; Belharouak, Ilias (2018-04-01). "Sodium intercalation in the phosphosulfate cathode NaFe2(PO4)(SO4)2". Journal of Power Sources. 382: 144–151. Bibcode:2018JPS...382..144B. doi:10.1016/j.jpowsour.2018.02.021. ISSN   0378-7753. OSTI   1495971.
  40. Essehli, Rachid; Alkhateeb, Alaa; Mahmoud, Abdelfattah; Boschini, Frèdéric; Ben Yahia, Hamdi; Amin, Ruhul; Belharouak, Ilias (September 2020). "Optimization of the compositions of polyanionic sodium-ion battery cathode NaFe2−xVx(PO4)(SO4)2". Journal of Power Sources. 469: 228417. Bibcode:2020JPS...46928417E. doi: 10.1016/j.jpowsour.2020.228417 . OSTI   1633153. S2CID   225331939.
  41. Ling, Chun-Sheng; Yan, Lin (2008-11-15). "Tetrakis[tris(2,2′-bi-1 H -benzimidazole)nickel(II)] bis(phosphate) sulfate". Acta Crystallographica Section E: Structure Reports Online. 64 (11): m1399. doi:10.1107/S1600536808032571. ISSN   1600-5368. PMC   2959627 . PMID   21580849.
  42. 1 2 Komornikov, V. A.; Grebenev, V. V.; Andreev, P. V.; Dmitricheva, E. V. (May 2015). "Study of phase equilibria in the Rb3H(SO4)2-RbH2PO4-H2O system". Crystallography Reports. 60 (3): 431–437. Bibcode:2015CryRp..60..431K. doi:10.1134/S1063774515030086. ISSN   1063-7745. S2CID   101238604.
  43. 1 2 3 Stiewe, A.; Sonntag, R.; Troyanov, S.I.; Hansen, T.; Kemnitz, E. (January 2000). "Synthesis and Structure Determination of Rb2(HSO4)(H2PO4) and Rb4(HSO4)3(H2PO4) by X-Ray Single Crystal and Neutron Powder Diffraction". Journal of Solid State Chemistry. 149 (1): 9–15. Bibcode:2000JSSCh.149....9S. doi:10.1006/jssc.1999.8468.
  44. 1 2 3 4 5 6 7 8 9 Pet’kov, V. I.; Dmitrienko, A. S.; Bokov, A. I. (July 2018). "Thermal expansion of phosphate–sulfates of eulytite structure". Journal of Thermal Analysis and Calorimetry. 133 (1): 199–205. doi:10.1007/s10973-017-6676-7. ISSN   1388-6150. S2CID   104200610.
  45. 1 2 3 4 5 6 7 Savinykh, D. O.; Khainakov, S. A.; Orlova, A. I.; Garcia-Granda, S. (June 2018). "New Phosphate-Sulfates with NZP Structure". Russian Journal of Inorganic Chemistry. 63 (6): 714–724. doi:10.1134/S0036023618060207. hdl: 10651/50903 . ISSN   0036-0236. S2CID   105627248.
  46. 1 2 3 Zhao, Xiao; Mei, Dajiang; Xu, Jingli; Wu, Yuandong (February 2016). "A Sb 2 (SO 4 ) 2 (PO 4 ) ( A = H 3 O + , K, Rb): Layered Structure Containing Ordered Sulfate and Phosphate Anions: A Sb 2 (SO 4 ) 2 (PO 4 ) ( A = H 3 O + , K, Rb". Zeitschrift für anorganische und allgemeine Chemie. 642 (4): 343–349. doi:10.1002/zaac.201500743.
  47. Chisholm, C (2000-11-02). "Superprotonic behavior of Cs2(HSO4)(H2PO4) – a new solid acid in the CsHSO4–CsH2PO4 system". Solid State Ionics. 136–137 (1–2): 229–241. doi:10.1016/S0167-2738(00)00315-5.
  48. Chisholm, Calum R. I.; Haile, Sossina M. (1999-12-01). "Structure and thermal behavior of the new superprotonic conductor Cs 2 (HSO 4 )(H 2 PO 4 )". Acta Crystallographica Section B: Structural Science. 55 (6): 937–946. doi:10.1107/S0108768199009921. ISSN   0108-7681. PMID   10927436.
  49. Hayashi, Shigenobu; Jimura, Keiko (November 2017). "Incorporation of ammonium ions in Cs2(HSO4)(H2PO4) confirmed by solid-state NMR". Solid State Ionics. 311: 83–89. doi:10.1016/j.ssi.2017.09.015.
  50. Makarova, I. P.; Grebenev, V. V.; Vasiliev, I. I.; Dmitricheva, E. V.; Komornikov, V. A.; Dolbinina, V. V. (July 2015). "Investigation of the structure of Cs3(HSO4)2(H2PO4) single crystals". Crystallography Reports. 60 (4): 498–507. Bibcode:2015CryRp..60..498M. doi:10.1134/S1063774515040148. ISSN   1063-7745. S2CID   93224453.
  51. Makarova, I. P.; Grebenev, V. V.; Vasil’ev, I. I.; Dmitricheva, E. V.; Komornikov, V. A.; Dolbinina, V. V.; Mikheikin, A. S. (January 2016). "Structure of Cs4(HSO4)3(H2PO4) single crystals". Crystallography Reports. 61 (1): 18–23. Bibcode:2016CryRp..61...18M. doi:10.1134/S1063774516010119. ISSN   1063-7745. S2CID   101823664.
  52. Makarova, Irina; Grebenev, Vadim; Dmitricheva, Elena; Vasiliev, Ilya; Komornikov, Vladimir; Dolbinina, Valentina; Mikheykin, Alexey (2016-02-01). "M m H n ( X O 4 ) ( m + n )/2 crystals: structure, phase transitions, hydrogen bonds, conductivity. II. Structure and properties of Cs 3 (HSO 4 ) 2 (H 2 PO 4 ) and Cs 4 (HSO 4 ) 3 (H 2 PO 4 ) single crystals". Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials. 72 (1): 133–141. doi:10.1107/S2052520615023069. ISSN   2052-5206. PMID   26830805.
  53. Grebenev, V. V.; Makarova, I. P.; Ksenofontov, D. A.; Komornikov, V. A.; Dmitricheva, E. V. (November 2013). "Phase transitions in Cs5(HSO4)2(H2PO4)3 crystal". Crystallography Reports. 58 (6): 894–898. Bibcode:2013CryRp..58..894G. doi:10.1134/S1063774513060138. ISSN   1063-7745. S2CID   94005540.
  54. Makarova, I. P.; Grebenev, V. V.; Komornikov, V. A.; Selezneva, E. V. (November 2016). "New crystals of the CsHSO4–CsH2PO4–H2O system". Crystallography Reports. 61 (6): 918–922. Bibcode:2016CryRp..61..918M. doi:10.1134/S1063774516060079. ISSN   1063-7745. S2CID   99983650.
  55. Haile, Sossina M.; Calkins, Pamela M. (November 1998). "X-Ray Diffraction Study of Cs5(HSO4)3(H2PO4)2, a New Solid Acid with a Unique Hydrogen-Bond Network". Journal of Solid State Chemistry. 140 (2): 251–265. Bibcode:1998JSSCh.140..251H. doi:10.1006/jssc.1998.7884.
  56. 1 2 Komornikov, V. A.; Timakov, I. S.; Zajnullin, O. B.; Grebenev, V. V.; Makarova, I. P.; Selezneva, E. V.; Ksenofontov, D. A. (November 2019). "New Crystals in the CsHSO4–CsH2PO4–NH4H2PO4–H2O System". Crystallography Reports. 64 (6): 984–990. Bibcode:2019CryRp..64..984K. doi:10.1134/S1063774519060105. ISSN   1063-7745. S2CID   209509678.
  57. König, K.-H.; Eckstein, G. (December 1972). "Amorphe und kristalline cer(IV)-phosphate als ionenaustauscher—IV Makrosorption, tracersorption und nuklidtrennungen an kristallinen cer(IV)-phosphatsulfaten". Journal of Inorganic and Nuclear Chemistry (in German). 34 (12): 3771–3779. doi:10.1016/0022-1902(72)80024-1.
  58. König, K.-H.; Eckstein, G. (April 1973). "Kationenaustausch an kristallinen Cer(III)-phosphatsulfaten". Journal of Inorganic and Nuclear Chemistry (in German). 35 (4): 1359–1367. doi:10.1016/0022-1902(73)80210-6.
  59. Wang, Dan; Yu, Ranbo; Xu, Yaohua; Feng, Shouhua; Xu, Ruren; Kumada, Nobuhiro; Kinomura, Nobukazu; Matsumura, Yasuyuki; Takano, Mikio (November 2002). "The First Organically Templated Layered Cerium Phosphate-Hydrogen Sulfate: [enH 2 ] 0.5 [Ce III (PO 4 )(HSO 4 )(OH 2 )]". Chemistry Letters. 31 (11): 1120–1121. doi:10.1246/cl.2002.1120. ISSN   0366-7022.
  60. Kumada, Nobuhiro; Kumon, Junichi; Miyagawa, Kazuya; Yonesaki, Yoshinori; Takei, Takahiro; Kinomura, Nobukazu; Wang, Dan; Yu, Ranbo (2010). "Preparation and crystal structure of [enH2]0.5[Ho(HPO4)(SO4)(H2O)] (en; ethylenediamine)". Journal of the Ceramic Society of Japan. 118 (1375): 236–240. doi: 10.2109/jcersj2.118.236 . ISSN   1348-6535. S2CID   98263946.
  61. 1 2 3 4 5 6 7 8 9 Durif, A. (1957). C. R. Hebd. Séances Acad. Sci. 245: 1151–1152.{{cite journal}}: Missing or empty |title= (help)
  62. Brandel, Vladimir; Dacheux, Nicolas; Rousselle, Jérôme; Genet, Michel (August 2002). "Synthesis of some new thorium phosphates". Comptes Rendus Chimie. 5 (8–9): 599–606. doi:10.1016/S1631-0748(02)01419-4.
  63. PubChem. "Adenosine-5'-phosphosulfate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-07-14.