Sulfate fluoride

Last updated

The sulfate fluorides are double salts that contain both sulfate and fluoride anions. They are in the class of mixed anion compounds. Some of these minerals are deposited in fumaroles.

Contents

Fluoride sulfates were first discovered by Jean Charles de Marignac in 1859. [1] [2]

Some elements such as cobalt or uranium can form complexes that contain fluoride and sulfate groups, and would be referred to as fluoro and sulfato metallates.

List

Minerals

nameformularatiosystemspace groupunit cell Åvolumedensityopticalreferences
Chukhrovite-(Ca) Ca4.5Al2(SO4)F13·12H2O1:13 Isometric Fd3a = 16.749 Z=84698.62.23isotropic n = 1.432 [3]
Chukhrovite-(Ce) Ca3(Y,Ce)(AlF6)2(SO4)F · 10H2O1:13IsometricFd3 [4]
Chukhrovite-(Y) Ca3(Ce,Y)(AlF6)2(SO4)F · 10H2O1:13IsometricFd3 [5]
Chukhrovite-(Nd) Ca3(Nd,Y)Al2(SO4)F13·12H2O1:13IsometricFd3a = 16.759 Z=84,707.02.42isotropic nα = 1.443 [6]
Meniaylovite Ca4[(SO4)(SiF6)(AlF6)]F · 12H2O1:13IsometricFd3a = 16.722 Z=84,675.89Isotropic n = 1.43
Pseudograndreefite Pb6(SO4)F101:10 Orthorhombic F2 2 2a = 8.51 b = 19.57 c = 8.49 Z=41,413.93Biaxial (+) nα = 1.864 nβ = 1.865 nγ = 1.873

2V: measured: 30° , calculated: 40°

Max birefringence: δ = 0.009

[7]
Creedite Ca3SO4Al2F8(OH)2 · 2H2O1:8 Monoclinic B2/ba = 13.936, b = 8.606, c = 9.985 β = 94.39° Z=41,194.022.713Biaxial (-) nα = 1.461 nβ = 1.478 nγ = 1.485

Max birefringence: δ = 0.024

[8]
Thermessaite K2AlF3(SO4)1:3OrthorhombicPbcna = 10.81 b = 8.336 c = 6.822614.752.77
Grandreefite Pb2(SO4)F21:2monoclinicA2/aa = 8.667 b = 4.4419 c = 14.242 β = 107.418 Z=4523.157.15Biaxial (+) nα = 1.872 nβ = 1.873 nγ = 1.897

2V: Measured: 23°

Max Birefringence: δ = 0.025

[9]
Arangasite Al2F(PO4)(SO4) · 9H2O1:1monoclinicP2/aa = 7.073 b = 9.634 c = 10.827 β = 100.40 Z = 2725.72.01Biaxial (+) ?nα = 1.493(5) nγ = 1.485(5)

Max birefringence: δ = 0.008

[10] [11]
Khademite Al(SO4)F · 5H2O1:1orthorhombica = 11.17 b = 13.05 c = 10.881,585.961.925Biaxial (-) nα = 1.440 nβ = 1.460 nγ = 1.487

2V: measured: 68° calculated: 84°

Max birefringence δ = 0.047

colourless

[12]
Kogarkoite Na3(SO4)F1:1Monoclinic?P21a = 18.07 b = 6.94 c = 11.44 β = 107.72° Z=121,366.582.676Biaxial (+) nα = 1.439 nβ = 1.439 nγ = 1.442

Max Birefringence: δ = 0.003

[13]
kononovite NaMg(SO4)F1:1monoclinicC2/ca = 6.662 b = 8.584 c = 7.035 β = 114.06 Z=4367.42.91biaxial (+), nα = 1.488 nβ = 1.491 nγ = 1.496 2Vmeas = 75°

Max birefringence: δ = 0.008

[14]
Lannonite Mg2Ca4Al4(SO4)8F8 · 24H2O8:8 Tetragonal I4/ma = 6.860 c = 28.0531,320.162.22Uniaxial (+) nω = 1.460 nε = 1.478

Max Birefringence:δ = 0.018

[15]
Sulphohalite Na6(SO4)2FCl2:1IsometricFm3mIsotropic [16]
Uklonskovite NaMgSO4F•2H2O1:1monoclinica = 7.2 Å, b = 7.21 Å, c = 5.73 β = 113.23°273.34Biaxial (+) nα = 1.476 nγ = 1.500

Max Birefringence δ = 0.024

[17]
Vlodavetsite AlCa2(SO4)2F2Cl · 4H2O2:2TetragonalI4/ma = 6.870, c = 13.342 Z=2629.70Uniaxial (+) nω = 1.509 nε = 1.526

Max birefringence: δ = 0.017

[18]
Schairerite Na21(SO4)7ClF67:6 trigonal 3_2/ma = 12.17 c = 19.292,474.252.67Uniaxial (+) nω = 1.440 nε = 1.445

Max birefringence: δ = 0.005

[19]
Galeite Na15(SO4)5F4Cl5:4Trigonala = 12.17 c = 13.941,788.03Uniaxial (+) nω = 1.447 nε = 1.449

Max Birefringence: δ = 0.002

[20]
Fluorellestadite Ca10(SiO4)3(SO4)3F23:2hexagonala = 9.53 c = 6.91543.493.03Uniaxial (-) nω = 1.655 nε = 1.650

Max birefringence:δ = 0.005

[21]
Straßmannite Al(UO2)(SO4)2F·16H2O2:1monoclinicC2/ca = 11.0187 b = 8.3284 c = 26.673 β = 97.426°2427.22.20pale yellowish green

Biaxial (-) nα = 1.477(2) nβ = 1.485(2) nγ = 1.489(2)

2V: measured: 70° calculated: 70.2°

Max birefringence: δ = 0.012

[22]
Svyazhinite (Mg,Mn2+,Ca)(Al,Fe3+)(SO4)2F · 14H2O2:1 triclinic a = 6.21 b = 13.3 c = 6.25 α = 90.15°, β = 93.56°, γ = 82.08°510.29Biaxial (-) nα = 1.423 nβ = 1.439 nγ = 1.444

2V: calculated: 56°

Max birefringence: δ = 0.021

[23]
Wilcoxite MgAl(SO4)2F · 17H2O2:1triclinicP1a = 6.644, b = 6.749, c = 14.892 α = 79.664°, β = 80.113°, γ = 62.487579.61.58Biaxial (-) nα = 1.424 nβ = 1.436 nγ = 1.438

2V: measured: 48° , calculated: 44°

Max birefringence: δ = 0.014

[24]
Krasheninnikovite KNa2CaMg(SO4)3F3:1hexagonalP63/mcma = 16.6682 c = 6.9007 Z = 61660.362.68Uniaxial (-) nω = 1.500 nε = 1.492

Max birefringence: δ = 0.008

[25]
Shuvalovite K2(Ca2Na)(SO4)3F3:1orthorhombicPnmaa = 13.2383 b = 10.3023 c = 8.9909 Z = 41226.222.64biaxial (−), nα = 1.493 = 1.498 nγ = 1.498 2Vmeasured ≤ 20 [26]
Thermessaite-(NH4)(NH4)2AlSO4F31:3orthorhombicPbcna = 11.3005 b = 8.6125 c = 6.8501 Z = 4666.69 [27]

Artificial

nameformulaMWratiosystemspace groupunit cellvolumedensityopticalCASreferences
LiMgFSO41:1triclinicP1a = 5.1623 b = 5.388 c = 7.073 α = 106.68 β=107.40 and γ=97.50° Z=2 [28]
NaMgSO4F1:1monoclinicC2/cZ=4109.8022.84 [29]
Na2AlSO4F31:1monoclinicP2/ca=6.3562 b=6.2899 c=7.1146 β=115.687° Z=2256.332.928 [30]
Li4NH4Al(SO4)2F42:4monoclinicC2/ca=13.6561 b=4.9761 c=13.9919 β=92.135° Z=4950.22.383 [30]
Na4TiF4(SO4)22:4 [31]
β-K3[SO4]F1:1tetragonalI4/mcma= 7.2961 c= 10.854 [32]
α-K3[SO4]F1:1cubicPm3ma≈5.43 ≥585 °C [32]
KMgSO4F178.471:1orthorhombicPna21a=12.973 b=6.4585 c=10.635 Z=8891.12.661colourless [33] [34]
Li6K3Al(SO4)4F44:4triclinicP1a=5.0304 b=9.5690 c=9.7078 α=70.968° β=75.531° γ=75.183° Z=1420.082.554 [30]
sodium calcium sulfapatiteNa6Ca4(SO4)6F26:2
K3Ca2(SO4)3F3:1orthorhombicPn21aa=13.467 b=10.521 c=9.167 Z=41299.9 [35]
[N2C10H12] TiF4SO4378.16?1:4triclinicP1a=8.691 b=9.208 c=9.288 α=68.56 β=84.30 γ=81.59 Z=2              683.61.837colourless [31]
[N2C10H12]TiF2(SO4)2436.22?2:2triclinicP1a=4.5768 b=8.9162 c=10.1236 α=112.888 β=95.196 γ=98.706 Z=1              371.111.952colourless [31]
Rb2TiF2(SO4)2 · 2H2O1:1 [36]
Cs2TiF2(SO4)2 · 3H2O1:1 [36]
[N2C6H16]V(SO4)2F378.272:1monoclinicP21/ca=10.262 b =17.761 c=7.0518 β=93.93 Z=4                 1282.31.959green [31]
Na2VF3SO41:3 [31]
Na3CrF2(SO4)22:2 [31]
LiMnSO4F1:1monoclinica=13.2406 b=6.4082 c=10.0229 β=120.499732.76 [37]
[N2C6H16]2+Mn2F2(SO4)22:2 [31]
Li2MnF3(SO4)1:3pink-brown [38]
(NH4)2MnF3(SO4)1:3pink-brown [38]
Na2MnF3(SO4)1:3pink-brown [38]
Dipotassium trifluorosulfato manganate(III)K2MnF3(SO4)1:3pink-brown [38]
FeFSO4170.911:1monoclinicC2/ca = 7.3037 b = 7.0753 c = 7.3117 β = 119.758°328.0173.461 [39]
K2FeF3SO41:3 [31]
Li3FeF2(SO4)2·H2O2:2 [31]
[N2C6H16]Fe(SO4)2F383.182:1monoclinicP21/ca=10.2220 b=17.6599 c=7.0437 β=93.894 Z=41268.592.006brown [31]
LiFeFSO4177.851:1triclinicP1a = 5.1751 b = 5.4915 c = 7.2211 α = 106.506° β = 107.178° γ=97.865°182.443.237grass green [39]
sodium ferrous sulfate fluorideNaFeFSO4193.911:1monoclinicP21/ca = 6.6739 b = 8.6989 c = 7.1869 β = 113.525°382.5673.366 [39]
sodium ferrous sulfate fluoride dihydrateNaFeFSO4·2H2O1:1monoclinicP21/ma=5.75959 b=7.38273 c=7.25047 β=113.3225283.109white [40]
trisodium ferric disulfate difluorideNa3Fe(SO4)2F22:2orthorhombicPncaa = 6.6419 b = 8.8115 c = 14.0023 [41]
NaCoFSO41:1monoclinicC2/ca=6.6687 b=8.6251 c=7.1444 β=114.323374.46 [42]
NaCoFSO4·2H2O1:1monoclinicP21/ma=5.73364 b=7.31498 c=7.18640 β=113.5028276.40pink [40]
NH4CoFSO4·2H2O1:1 [43]
KCoFSO4·2H2O1:1 [43]
NaNiFSO4·2H2O1:1monoclinicP21/ma=5.70118 b=7.27603 c=7.15634 β=113.8883271.429green [40]
LiZnSO4F1:1orthorhombicPnma7.40357 b=6.32995 c=7.42016347.740 [44]
KZnSO4F219.531:1orthorhombicPna21a=13.0602 b=6.4913 c=10.7106 Z=8908.023.212transparent <190 nm [34]
K2Zn3(SO4)(HSO4)2F41:4orthorhombicCmc21a=17.725 b=7.6650 c=9.7505 Z=41324.73.212colourless [45]
Li4RbAl(SO4)2F42:4monoclinicC2/ca=13.6503 b=4.984 c=14.0081 β=91.509° Z=4948.822.858 [46]
Y(SO4)F203.971:1orthorhombicPnmaa=8.3128, b=6.9255, c=6.3905 Z=4367.903.682 [47]
YSO4F·H2O1:1monoclinicP21/na=4.9707 b=7.306 c=11.493 β =96.95°birefringence 0.0357 at 546 nm [48]
Y2Cu(OH)3(SO4)2F·H2O521.522:1monoclinicP21/na=11.6889, b=6.8660, c=12.5280, β=97.092° Z=4997.83.472blue [47]
KYSO4F21:2monoclinicP21/ma=6.4402 b=5.7784 c=6.992 β=113.684° Z=2238.303.652band gap 7.79 eV; birefringence 0.015 @ 546.1 nm [49]
RbYSO4F21:2monoclinicP21/ma=6.5347 b=5.8212 c=7.1383 β=114.332° Z=2247.424.140band gap 7.82 eV; birefringence 0.02 @ 546.1 nm [49]
Zr2O2F2SO4 · 6H2O1:2 [50]
α-K3ZrF5SO4 · H2O1:5 [36]
K2ZrF4SO41:4 [36]
K2ZrF2(SO4)2 · 2.5H2O2:2 [36]
K3Zr2F9SO4 · 2H2O1:9 [36]
(NH4)3Zr2F9SO4 · 2H2O1:9 [36]
(NH4)2ZrF4SO41:4 [36]
(NH4)2ZrF2(SO4)2 · 2.5H2O2:2 [36]
Rb2ZrF4SO41:4 [36]
Rb2ZrF2(SO4)2 · 3H2O2:2 [36]
Rb3Zr2F9SO4 ·2H2O1:9 [36]
RbZr2O2F(SO4)2 · 5H2O2:1 [36]
Cs2ZrF4SO41:4 [36]
Cs2ZrF2(SO4)2 · 2H2O2:2 [36]
Cs8Zr4F2(SO4)11 · 16H2O11:2 [36]
CsZr2O2F(SO4)2 · 6H2O2:1 [36]
Zr2O2F2SO4 · 5H2O1:2 [36]
triindium trifluoride sulfate ditellurite hydrateIn3(SO4)(TeO3)2F3(H2O)866.741:3orthorhombicP212121a=8.3115 b=9.4341 c=14.80681161.04.959band gap 4.10 eV; white [51]
4,4'-bipyridine distannous difluoride disulfate(C10H10N2)0.5[SnF(SO4)]2:2triclinicP1a=4.726 b=7.935 c=11.203 α = 81.05° β = 87.59° γ=73.70° Z=2398.32.608colourless [52]
diantimony dipotassium hexafluoride sulfateK2SO4·(SbF3)2531.761:6monoclinicP21/ca=9.1962 b=5.6523 c=19.2354 β =103.209 Z=4973.403.629colourless [53]
diantimony dirubidium hexafluoride sulfateRb2SO4·(SbF3)2624.501:6monoclinicP21a=9.405 b=5.7210 c=9.879 β = 103.850 Z=2516.14.018colourless [53]
tetraantimony hexarubidium dodecafluoride trisulfateRb6Sb4F12(SO4)31515.9893:12trigonalP3a=16.9490 c=7.5405 Z=21875.944.026white53168-89-1 [54] [55]
hexaammonium dodecafluorotrisulfatotetraantimonate(III)[NH4]6Sb4F12(SO4)33:12trigonalP3a=17.07 c=7.515 Z=318962.92 [56]
hexarubidium dodecafluorotrisulfatotetraantimonate(III)Rb6Sb4F12(SO4)33:12 [56]
Li4CsAl(SO4)2F42:4monoclinicC2/ca=13.574 b=5.0427 c=14.258 β=91.961° Z=4975.73.103 [46]
tetraantimony hexacaesium dodecafluoride trisulfateCs6Sb4F12(SO4)31800.6013:12triclinicP1a=7.9044 b=10.5139 c=17.3534 al=90.350 β = 90.151 ga=104.797 Z=41394.34.289white53200-54-7 [54] [57]
antimony caesium difluoride sulfateCsSbF2SO4388.721:2orthorhombicPna21a=9.9759 b=11.6616 c=5.2968515.204.19clear, non-linear SH [58]
LiLa2F3(SO4)22:3monoclinicI2/aa = 8.283, b = 6.947, c = 14.209 β = 95.30° Z=4 [59]
CeF2(SO4)1:2orthorhombicPca21a=8.3668 b=6.3600 c=8.3862birefringence 0.361@ 546 nm; SHG 8×KDP [60]
NdFSO4·H2O277.321:1monoclinicP21/na = 4.9948 b = 7.3684 c = 11.6366 β = 96.672° Z=4425.374.330pink [61]
NaPr2F3(SO4)22:3monoclinicI2/aa = 8.223, b = 6.9212, c = 14.199, β = 95.88° Z=4light green [62]
LiEr2F3(SO4)22:3orthorhombicPbcna = 14.791, b = 6.336, c = 8.137 [59]
hexa(triethylenetriammonium) tetrasamarium tetradecasulfate difluoride[C4H16N3]6[Sm4F2(SO4)14]2621.4314:2triclinicP1a = 11.1988 b = 11.4073 c = 16.2666 α = 89.901°, β = 82.406°, γ = 67.757° Z=11903.92.286colourless [61]
TbFSO4·H2O292.001:1monoclinicP21/na = 5.0014 b = 7.377 c = 11.651 β = 96.692° Z=4426.94.543colourless [61]
gadolinium fluoride sulfateGdF[SO4]1:1orthorhombicPnmaa=8.436 b=7.0176 c=6.4338 Z=4 [63]
γ-K2HfF2(SO4)2 · 2H2O2:2 [36]
K2HfF2(SO4)2 · 2.5H2O2:2 [36]
Na6Pb4(SO4)6F26:2 [64]
ThSO4F2.H2O1:2monoclinicP21na = 6.9065 b = 6.9256 c = 10.589 β = 96.755° Z = 4502.98colourless [65]
potassium catena-di—fluoro-difluorotetraoxo-di—sulphato-diuranate(VI) hydrateK2UF2O2(SO4)·H2O1:2monoclinicP21/ca = 9.263 b = 8.672 c = 11.019 β= 101.60° Z = 4867.13.83greenish yellow [66] [67]
(NH4)2[UO2F2(SO4)]triclinicP1a=9.73 b=10.28 c=11.37 α = 107.4°, β = 111.9°, γ =106.9 Z=2greenish yellow [67]
(NH4)6[(UO2)2F4(SO4)3]triclinicP1a=9.35 b=9.85 c=11.25 α = 109.2°, β = 113.1°, γ =102.5 Z=1greenish yellow [67]
Cs2[(UO2)2F4(SO4)]greenish yellow [67]
(NH4)[UO2F(SO4)]triclinicP1a=8.99 b=7.12 c=7.42 α = 114.5°, β = 117.4°, γ =103.2 Z=11.92greenish yellow [67]
RbUO2SO4ForthorhombicPca21a=25.353 b=6.735 c=11.496 Z=12 [68] [69]
[N2C6H16][UO2F2(SO4)]520.291:2triclinicP1a=6.9105 b=9.6605 =10.1033 α=72.6594(14) β=87.068 γ=77.9568 Z=2629.622.744yellow [70]
[N2C6H16][UO2F(SO4)]2884.372:2orthorhombicPmmna=6.9503 b=17.2147 c=7.0867 Z=2847.903.464yellow [70]
[N2C3H12][UO2F(SO4)]2·H2O862.322:2orthorhombicPnmaa=13.5775 b=14.6180 c=8.1168 Z=41610.993.555yellow [70]
[N2C5H14][UO2F(H2O)(SO4)]2907.382:2monoclinicP121/n1a=8.4354 b=15.5581 c=14.8442 β =96.666 Z=41935.03.115yellow [70]
[N2C6H18]2[UO2F(SO4)]4·H2O1792.804:4triclinicP1a=10.8832 b=10.9386 c=16.5325 α=75.6604 β=73.6101 γ=89.7726 Z=21824.733.263yellow [70]
[N2C3H12][UO2F(SO4)]2·H2O864.342:2monoclinicP121/n1a=6.7745 b=8.1589 c=14.3661 β =94.556 Z=2791.543.626yellow [70]
diammonium hydrazinium triuranium(IV) tetrafluoride hexasulfateU4+3F4(SO4)6·2NH4·H3N-NH31436.66:4monoclinicC2/ca=15.2309 b=8.77998 c=18.8590 β=105.5030 Z=42432.694.392green [71]

Related Research Articles

Langbeinites are a family of crystalline substances based on the structure of langbeinite with general formula M2M'2(SO4)3, where M is a large univalent cation, and M' is a small divalent cation. The sulfate group, SO2−4, can be substituted by other tetrahedral anions with a double negative charge such as tetrafluoroberyllate, selenate, chromate, molybdate, or tungstates. Although monofluorophosphates are predicted, they have not been described. By redistributing charges other anions with the same shape such as phosphate also form langbeinite structures. In these the M' atom must have a greater charge to balance the extra three negative charges.

The phosphidosilicates or phosphosilicides are inorganic compounds containing silicon bonded to phosphorus and one or more other kinds of elements. In the phosphosilicates each silicon atom is surrounded by four phosphorus atoms in a tetrahedron. The triphosphosilicates have a SiP3 unit, that can be a planar triangle like carbonate CO3. The phosphorus atoms can be shared to form different patterns e.g. [Si2P6]10− which forms pairs, and [Si3P7]3− which contains two-dimensional double layer sheets. [SiP4]8− with isolated tetrahedra, and [SiP2]2− with a three dimensional network with shared tetrahedron corners. SiP clusters can be joined, not only by sharing a P atom, but also by way of a P-P bond. This does not happen with nitridosilicates or plain silicates.

The borate fluorides or fluoroborates are compounds containing borate or complex borate ions along with fluoride ions that form salts with cations such as metals. They are in the broader category of mixed anion compounds. They are not to be confused with tetrafluoroborates (BF4) or the fluorooxoborates which have fluorine bonded to boron.

<span class="mw-page-title-main">Fluorocarbonate</span> Class of chemical compounds

A carbonate fluoride, fluoride carbonate, fluorocarbonate or fluocarbonate is a double salt containing both carbonate and fluoride. The salts are usually insoluble in water, and can have more than one kind of metal cation to make more complex compounds. Rare-earth fluorocarbonates are particularly important as ore minerals for the light rare-earth elements lanthanum, cerium and neodymium. Bastnäsite is the most important source of these elements. Other artificial compounds are under investigation as non-linear optical materials and for transparency in the ultraviolet, with effects over a dozen times greater than Potassium dideuterium phosphate.

The fluoride phosphates or phosphate fluorides are inorganic double salts that contain both fluoride and phosphate anions. In mineralogy, Hey's Chemical Index of Minerals groups these as 22.1. The Nickel-Strunz grouping is 8.BN.

The borate carbonates are mixed anion compounds containing both borate and carbonate ions. Compared to mixed anion compounds containing halides, these are quite rare. They are hard to make, requiring higher temperatures, which are likely to decompose carbonate to carbon dioxide. The reason for the difficulty of formation is that when entering a crystal lattice, the anions have to be correctly located, and correctly oriented. They are also known as carbonatoborates or borocarbonates. Although these compounds have been termed carboborate, that word also refers to the C=B=C5− anion, or CB11H12 anion. This last anion should be called 1-carba-closo-dodecaborate or monocarba-closo-dodecaborate.

The sulfate chlorides are double salts containing both sulfate (SO42–) and chloride (Cl) anions. They are distinct from the chlorosulfates, which have a chlorine atom attached to the sulfur as the ClSO3 anion.

<span class="mw-page-title-main">Sulfate carbonate</span> Class of chemical compounds

The sulfate carbonates are a compound carbonates, or mixed anion compounds that contain sulfate and carbonate ions. Sulfate carbonate minerals are in the 7.DG and 5.BF Nickel-Strunz groupings.

The sulfate nitrates are a family of double salts that contain both sulfate and nitrate ions (NO3, SO42−). They are in the class of mixed anion compounds. A few rare minerals are in this class. Two sulfate nitrates are in the class of anthropogenic compounds, accidentally made as a result of human activities in fertilizers that are a mix of ammonium nitrate and ammonium sulfate, and also in the atmosphere as polluting ammonia, nitrogen dioxide, and sulfur dioxide react with the oxygen and water there to form solid particles. The nitro group (NO3) can act as a ligand, and complexes containing it can form salts with sulfate.

The iodate fluorides are chemical compounds which contain both iodate and fluoride anions (IO3 and F). In these compounds fluorine is not bound to iodine as it is in fluoroiodates.

The borosulfates are heteropoly anion compounds which have sulfate groups attached to boron atoms. Other possible terms are sulfatoborates or boron-sulfur oxides. The ratio of sulfate to borate reflects the degree of condensation. With [B(SO4)4]5- there is no condensation, each ion stands alone. In [B(SO4)3]3- the anions are linked into a chain, a chain of loops, or as [B2(SO4)6]6− in a cycle. Finally in [B(SO4)2] the sulfate and borate tetrahedra are all linked into a two or three-dimensional network. These arrangements of oxygen around boron and sulfur can have forms resembling silicates. The first borosulfate to be discovered was K5[B(SO4)4] in 2012 by the research group of Henning Höppe, although the compound class as such had been postulated already in 1962 by G. Schott and H. U. Kibbel. Over 80 unique compounds are known as of 2024.

The borophosphates are mixed anion compounds containing borate and phosphate anions, which may be joined together by a common oxygen atom. Compounds that contain water or hydroxy groups can also be included in the class of compounds.

Borate sulfates are mixed anion compounds containing separate borate and sulfate anions. They are distinct from the borosulfates where the borate is linked to a sulfate via a common oxygen atom.

The borate chlorides are chemical compounds that contain both borate ions and chloride ions. They are mixed anion compounds. Many of them are minerals. Those minerals that crystallise with water (hydrates) may be found in evaporite deposits formed when mineral water has dried out.

Sulfidostannates, or thiostannates are chemical compounds containing anions composed of tin linked with sulfur. They can be considered as stannates with sulfur substituting for oxygen. Related compounds include the thiosilicates, and thiogermanates, and by varying the chalcogen: selenostannates, and tellurostannates. Oxothiostannates have oxygen in addition to sulfur. Thiostannates can be classed as chalcogenidometalates, thiometallates, chalcogenidotetrelates, thiotetrelates, and chalcogenidostannates. Tin is almost always in the +4 oxidation state in thiostannates, although a couple of mixed sulfides in the +2 state are known,

A selenate selenite is a chemical compound or salt that contains selenite and selenate anions (SeO32- and SeO42-). These are mixed anion compounds. Some have third anions.

The phosphate sulfates are mixed anion compounds containing both phosphate and sulfate ions. Related compounds include the arsenate sulfates, phosphate selenates, and arsenate selenates.

Oxalate sulfates are mixed anion compounds containing oxalate and sulfate. They are mostly transparent, and any colour comes from the cations.

Selenite sulfates are mixed anion compounds containing both selenite (SeO32−) and sulfate (SO42−) anions.

Iodate sulfates are mixed anion compounds that contain both iodate and sulfate anions. Iodate sulfates have been investigated as optical second harmonic generators, and for separation of rare earth elements. Related compounds include the iodate selenates and chromate iodates.

References

  1. Avdontceva, Margarita S.; Zolotarev, Andrey A.; Krivovichev, Sergey V. (November 2015). "Order–disorder phase transition in the antiperovskite-type structure of synthetic kogarkoite, Na3SO4F". Journal of Solid State Chemistry. 231: 42–46. Bibcode:2015JSSCh.231...42A. doi:10.1016/j.jssc.2015.07.033.
  2. de Marignac, Jean Charles (1859). Recherches sur les formes cristallines et la composition chimique de divers sels. p. 221.{{cite book}}: |work= ignored (help)
  3. "Chukhrovite-(Ca): Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  4. "Chukhrovite-(Ce): Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  5. "Chukhrovite-(Y): Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  6. "Chukhrovite-(Nd): Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  7. "Pseudograndreefite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  8. "Creedite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  9. "Grandreefite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  10. Yakubovich, O. V.; Steele, I. M.; Chernyshev, V. V.; Zayakina, N. V.; Gamyanin, G. N.; Karimova, O. V. (August 2014). "The crystal structure of arangasite, Al 2 F(PO 4 )(SO 4 )·9H 2 O determined using low-temperature synchrotron data". Mineralogical Magazine. 78 (4): 889–903. Bibcode:2014MinM...78..889Y. doi:10.1180/minmag.2014.078.4.09. ISSN   0026-461X. S2CID   94078023.
  11. "Arangasite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-16.
  12. "Khademite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-16.
  13. "Kogarkoite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  14. Pekov, Igor V.; Krzhizhanovskaya, Maria G.; Yapaskurt, Vasiliy O.; Belakovskiy, Dmitry I.; Chukanov, Nikita V.; Lykova, Inna S.; Sidorov, Evgeny G. (2015-07-27). "Kononovite, NaMg(SO4)F, a new mineral from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia". European Journal of Mineralogy. 27 (4): 575–580. Bibcode:2015EJMin..27..575P. doi:10.1127/ejm/2015/0027-2457. ISSN   0935-1221.
  15. "Lannonite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  16. "Sulphohalite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  17. "Uklonskovite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  18. "Vlodavetsite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  19. "Schairerite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  20. "Galeite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  21. "Fluorellestadite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-16.
  22. "Straßmannite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-16.
  23. "Svyazhinite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-16.
  24. "Wilcoxite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  25. Pekov, I. V.; Zelenski, M. E.; Zubkova, N. V.; Ksenofontov, D. A.; Kabalov, Y. K.; Chukanov, N. V.; Yapaskurt, V. O.; Zadov, A. E.; Pushcharovsky, D. Y. (2012-10-01). "Krasheninnikovite, KNa2CaMg(SO4)3F, a new mineral from the Tolbachik volcano, Kamchatka, Russia". American Mineralogist. 97 (10): 1788–1795. Bibcode:2012AmMin..97.1788P. doi:10.2138/am.2012.4104. ISSN   0003-004X. S2CID   98050549.
  26. Pekov, Igor V.; Zubkova, Natalia V.; Britvin, Sergey N.; Chukanov, Nikita V.; Yapaskurt, Vasiliy O.; Sidorov, Evgeny G.; Pushcharovsky, Dmitry Y. (2016-03-23). "Shuvalovite, K2(Ca2Na)(SO4)3F, a new mineral from the Tolbachik volcano, Kamchatka, Russia". European Journal of Mineralogy. 28 (1): 53–62. Bibcode:2016EJMin..28...53P. doi:10.1127/ejm/2015/0027-2471. ISSN   0935-1221.
  27. Garavelli, Anna; Pinto, Daniela; Mitolo, Donatella; Kolitsch, Uwe (October 2021). "Thermessaite-(NH 4 ), (NH 4 ) 2 AlF 3 (SO 4 ), a new fumarole mineral from La Fossa crater at Vulcano, Aeolian Islands, Italy". Mineralogical Magazine. 85 (5): 665–672. doi:10.1180/mgm.2021.69. ISSN   0026-461X.
  28. Sebastian, Litty; Gopalakrishnan, Jagannatha; Piffard, Yves (2002-01-24). "Synthesis, crystal structure and lithium ion conductivity of LiMgFSO4". Journal of Materials Chemistry. 12 (2): 374–377. doi:10.1039/b108289m.
  29. Persson, Kristin (2016), Materials Data on NaMgSO4F (SG:15) by Materials Project, LBNL Materials Project; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States), doi:10.17188/1310136 , retrieved 2020-06-15
  30. 1 2 3 Wu, Zhencheng; Li, Huimin; Zhang, Zhiyuan; Su, Xin; Shi, Hongsheng; Huang, Yi-Neng (2024-01-22). "Design of Deep-Ultraviolet Zero-Order Waveplate Materials by Rational Assembly of [AlO 2 F 4 ] and [SO 4 ] Groups". Inorganic Chemistry. 63 (3): 1674–1681. doi:10.1021/acs.inorgchem.3c03904. ISSN   0020-1669.
  31. 1 2 3 4 5 6 7 8 9 10 Marshall, Kayleigh L.; Wang, Qianlong; Sullivan, Hannah S. I.; Weller, Mark T. (2016). "Synthesis and structural characterisation of transition metal fluoride sulfates". Dalton Transactions. 45 (21): 8854–8861. doi:10.1039/C6DT00582A. ISSN   1477-9226. PMID   27151299.
  32. 1 2 Skakle, Janet M. S.; Fletcher, James G.; West, Anthony R. (1996). "Polymorphism, structures and phase transformation of K3[SO4]F". Journal of the Chemical Society, Dalton Transactions (12): 2497–2501. doi:10.1039/dt9960002497. ISSN   0300-9246.
  33. Poddar, Anuradha; Gedam, S.C.; Dhoble, S.J. (November 2013). "Photoluminescence study of KMgSO4F:X (X=Cu+ or Dy3+ or Eu3+) halosulfate phosphor". Journal of Luminescence. 143: 579–582. Bibcode:2013JLum..143..579P. doi:10.1016/j.jlumin.2013.06.010.
  34. 1 2 Zhou, Yang; Liu, Xiaomeng; Lin, Zheshuai; Li, Yanqiang; Ding, Qingran; Liu, Youchao; Chen, Yangxin; Zhao, Sangen; Hong, Maochun; Luo, Junhua (2021-12-20). "Pushing KTiOPO 4 -like Nonlinear Optical Sulfates into the Deep-Ultraviolet Spectral Region". Inorganic Chemistry. 60 (24): 18950–18956. doi:10.1021/acs.inorgchem.1c02764. ISSN   0020-1669. PMID   34881864. S2CID   245093289.
  35. Triviño Vázquez, F. (July 1985). "A new compound: K3Ca2 (SO4)3F, identified in coatings of heat recover cyclones". Cement and Concrete Research. 15 (4): 581–584. doi:10.1016/0008-8846(85)90055-9.
  36. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Boroznovskaya, N. N.; Godneva, M. M.; Motov, D. L.; Klimkin, V. M. (April 2007). "Synthesis and luminescent properties of alkali-metal and ammonium fluorosulfatozirconates and fluorosulfatohafnates". Inorganic Materials. 43 (4): 425–429. doi:10.1134/S0020168507040176. ISSN   0020-1685. S2CID   97061342.
  37. Tripathi, Rajesh; Popov, Guerman; Ellis, Brian L.; Huq, Ashfia; Nazar, L. F. (2012). "Lithium metal fluorosulfate polymorphs as positive electrodes for Li-ion batteries: synthetic strategies and effect of cation ordering". Energy & Environmental Science. 5 (3): 6238. doi:10.1039/c2ee03222h. ISSN   1754-5692.
  38. 1 2 3 4 Bhattacharjee, M.N.; Chaudhuri, M.K. (January 1984). "Alkali-metal trifluoromonosulphatomanganates (III) A2[MnF3(SO4)] (A = NH4, Li, Na or K)". Polyhedron. 3 (5): 599–602. doi:10.1016/S0277-5387(00)88094-8.
  39. 1 2 3 Tripathi, Rajesh; Ramesh, T. N.; Ellis, Brian L.; Nazar, Linda F. (2010-11-08). "Scalable Synthesis of Tavorite LiFeSO4F and NaFeSO4F Cathode Materials". Angewandte Chemie International Edition. 49 (46): 8738–8742. doi:10.1002/anie.201003743. PMID   20941717.
  40. 1 2 3 Ati, M.; Dupont, L.; Recham, N.; Chotard, J.N.; Walker, W.T.; Davoisne, C.; Barpanda, P.; Sarou-Kanian, V.; Armand, M.; Tarascon, J.M. (2010-07-13). "Synthesis, Structural, and Transport Properties of Novel Bihydrated Fluorosulphates NaMSO 4 F·2H 2 O (M = Fe, Co, and Ni)". Chemistry of Materials. 22 (13): 4062–4068. doi:10.1021/cm1010482. ISSN   0897-4756.
  41. Long, Zhao; Wei, Liu; Shuang, Liu; lixin, Cao; Ge, Su; Rongjie, Gao (November 2015). "The first anhydrous metal fluorosulfate Na3Fe(SO4)2F2 with layered structure prepared via the interesting "tailor" role of fluorine ions based on Na3Fe(SO4)2". Inorganica Chimica Acta. 438: 191–195. doi:10.1016/j.ica.2015.09.020.
  42. Melot, B. C.; Rousse, G.; Chotard, J.-N.; Kemei, M. C.; Rodríguez-Carvajal, J.; Tarascon, J.-M. (2012-03-12). "Magnetic structure and properties of NaFeSO 4 F and NaCoSO 4 F". Physical Review B. 85 (9): 094415. Bibcode:2012PhRvB..85i4415M. doi:10.1103/PhysRevB.85.094415. ISSN   1098-0121.
  43. 1 2 Bhattacharjee, Manabendra N.; Chaudhuri, Mihir K.; Devi, Meenakshi; Yhome, Khriesavilie (1987). "Direct synthesis of alkali trifluorocobaltate( II ) monohydrates, A[CoF 3 ]·H 2 O (A = NH 4 , Na, or K). First synthesis and structural assessment of mixed-ligand fluoro complexes of cobalt( II ), [Co(NH 3 ) 4 F 2 ] and A[CoF(SO 4 )(H 2 O) 2 ](A = NH 4 , Na, or K)". J. Chem. Soc., Dalton Trans. (5): 1055–1057. doi:10.1039/DT9870001055. ISSN   0300-9246.
  44. Barpanda, Prabeer; Chotard, Jean-Noël; Delacourt, Charles; Reynaud, Marine; Filinchuk, Yaroslav; Armand, Michel; Deschamps, Michael; Tarascon, Jean-Marie (2011-03-07). "LiZnSO4F Made in an Ionic Liquid: A Ceramic Electrolyte Composite for Solid-State Lithium Batteries". Angewandte Chemie International Edition. 50 (11): 2526–2531. doi:10.1002/anie.201006331. PMID   21370330.
  45. Zhou, Yang; Zhang, Xingyu; Xiong, Zheyao; Long, Xifa; Li, Yanqiang; Chen, Yangxin; Chen, Xin; Zhao, Sangen; Lin, Zheshuai; Luo, Junhua (2021-08-23). "Non-π-Conjugated Deep-Ultraviolet Nonlinear Optical Crystal K 2 Zn 3 (SO 4 )(HSO 4 ) 2 F 4". The Journal of Physical Chemistry Letters. 12 (34): 8280–8284. doi:10.1021/acs.jpclett.1c01533. ISSN   1948-7185. PMID   34425677. S2CID   237280608.
  46. 1 2 Jiang, Bao; Yan, Yuchen; Liu, Xinglong; Zhang, Boxuan; Chen, Zhaohui (2023-05-01). "Li<sub>4</sub>AAl(SO<sub>4</sub>)<sub>2</sub>F<sub>4</sub> (A = Cs, Rb): two deep-UV fluoroaluminosulfates with special motif [AlS<sub>2</sub>O<sub>8</sub>F<sub>4</sub>]". SCIENTIA SINICA Chimica. doi:10.1360/SSC-2023-0072. ISSN   1674-7224.
  47. 1 2 Wang, Xiqu; Liu, Lumei; Ross, Kent; Jacobson, Allan J. (January 2000). "Synthesis and crystal structures of yttrium sulfates Y(OH)(SO4), Y(SO4)F, YNi(OH)3(SO4)-II and Y2Cu(OH)3(SO4)2F·H2O". Solid State Sciences. 2 (1): 109–118. doi:10.1016/S1293-2558(00)00107-2.
  48. Jiao, Dong-Xue; Zhang, Hui-Li; Li, Xiao-Fei; He, Chao; Li, Jin-Hua; Wei, Qi; Yang, Guo-Yu (2023-10-12). "YSO 4 F·H 2 O: A Deep-Ultraviolet Birefringent Rare-Earth Sulfate Fluoride with Enhanced Birefringence Induced by Fluorinated Y-Centered Polyhedra". Inorganic Chemistry. 62 (42): 17333–17340. doi:10.1021/acs.inorgchem.3c02632. ISSN   0020-1669. PMID   37823856. S2CID   263907626.
  49. 1 2 Wu, Zhencheng; Li, Huimin; Hou, Xueling; Yang, Zhihua; Shi, Hongsheng (2024-02-27). "AYSO 4 F 2 (A = K, Rb): [YO 4 F 4 ] Polyhedra Enhancement of Birefringence in Non-π-Conjugated Sulfate Systems". Inorganic Chemistry. 63 (10): 4783–4789. doi:10.1021/acs.inorgchem.4c00221. ISSN   0020-1669.
  50. Godneva, M. M.; Motov, D. L.; Kuznetsov, V. Ya (2002). "Phase formation in the ZrO2 – H2SO4 – LiF(HF) – H2O system". Zhurnal Neorganicheskoj Khimii (in Russian). 47 (2): 312–318. ISSN   0044-457X.
  51. Gong, Ya-Ping; Ma, Yun-Xiang; Ying, Shao-Ming; Mao, Jiang-Gao; Kong, Fang (2019-08-19). "Two Indium Sulfate Tellurites: Centrosymmetric In 2 (SO 4 )(TeO 3 )(OH) 2 (H 2 O) and Non-centrosymmetric In 3 (SO 4 )(TeO 3 ) 2 F 3 (H 2 O)". Inorganic Chemistry. 58 (16): 11155–11163. doi:10.1021/acs.inorgchem.9b01730. ISSN   0020-1669. PMID   31365247. S2CID   199054944.
  52. Detkov, D. G.; Gorbunova, Yu. E.; Kazarinova, A. S.; Mikhailov, Yu. N.; Kokunov, Yu. V. (2003). "Polymeric Tin(II) Complexes with Dibasic Nitrogen-Containing Organic Cations. Synthesis and Crystal Structure of (C10H10N2)0.5[SnF(SO4]". Russian Journal of Coordination Chemistry. 29 (7): 451–454. doi:10.1023/A:1024721310366. S2CID   92085359.
  53. 1 2 Wang, Qian; Wang, Lei; Zhao, Xiaoyu; Huang, Ling; Gao, Daojiang; Bi, Jian; Wang, Xin; Zou, Guohong (2019). "Centrosymmetric K 2 SO 4 ·(SbF 3 ) 2 and noncentrosymmetric Rb 2 SO 4 ·(SbF 3 ) 2 resulting from cooperative effects of lone pair and cation size". Inorganic Chemistry Frontiers. 6 (11): 3125–3132. doi:10.1039/C9QI01036J. ISSN   2052-1553. S2CID   203556418.
  54. 1 2 Dong, Xuehua; Long, Ying; Zhao, Xiaoyu; Huang, Ling; Zeng, Hongmei; Lin, Zhien; Wang, Xin; Zou, Guohong (22 May 2020). "A6Sb4F12(SO4)3 (A = Rb, Cs): Two Novel Antimony Fluoride Sulfates with Unique Crown-like Clusters". Inorganic Chemistry. 59 (12): 8345–8352. doi:10.1021/acs.inorgchem.0c00756. PMID   32441103. S2CID   218831866.
  55. "Landolt-Börnstein Substance / Property Index". lb.chemie.uni-hamburg.de. Retrieved 2020-05-25.
  56. 1 2 Waśkowska, A.; Lis, T. (1988-08-15). "Structure of hexaammonium dodecafluorotrisulfatotetraantimonate(III) at 300 K". Acta Crystallographica Section C: Crystal Structure Communications. 44 (8): 1342–1345. doi:10.1107/S0108270188003774.
  57. "Landolt-Börnstein Online Search". lb.chemie.uni-hamburg.de. Retrieved 2020-05-25.
  58. Dong, Xuehua; Huang, Ling; Hu, Cuifang; Zeng, Hongmei; Lin, Zhien; Wang, Xin; Ok, Kang Min; Zou, Guohong (2019-05-13). "CsSbF 2 SO 4 : An Excellent Ultraviolet Nonlinear Optical Sulfate with a KTiOPO 4 (KTP)-type Structure". Angewandte Chemie International Edition. 58 (20): 6528–6534. doi:10.1002/anie.201900637. ISSN   1433-7851. PMID   30805990. S2CID   73468465.
  59. 1 2 Wickleder, Mathias S. (1999). "LiLa2F3(SO4)2 und LiEr2F3(SO4)2: Fluoridsulfate der Selten-Erd-Elemente mit Lithium". Zeitschrift für anorganische und allgemeine Chemie (in German). 625 (2): 302–308. doi:10.1002/(SICI)1521-3749(199902)625:2<302::AID-ZAAC302>3.0.CO;2-Y. ISSN   1521-3749.
  60. Wu, Chao; Wu, Tianhui; Jiang, Xingxing; Wang, Zujian; Sha, Hongyuan; Lin, Lin; Lin, Zheshuai; Huang, Zhipeng; Long, Xifa; Humphrey, Mark G.; Zhang, Chi (2021-03-24). "Large Second-Harmonic Response and Giant Birefringence of CeF 2 (SO 4 ) Induced by Highly Polarizable Polyhedra". Journal of the American Chemical Society. 143 (11): 4138–4142. doi:10.1021/jacs.1c00416. hdl: 1885/251607 . ISSN   0002-7863. PMID   33625206. S2CID   232039261.
  61. 1 2 3 Zhou, Wanli; Xu, Yan; Han, Lijie; Zhu, Dunru (2010). "Solvothermal syntheses, crystal structures and luminescence properties of three new lanthanide sulfate fluorides". Dalton Transactions. 39 (15): 3681–6. doi:10.1039/b926131a. ISSN   1477-9226. PMID   20354621.
  62. Wickleder, Mathias S. (2000). "Synthese und Kristallstruktur von NaPr2F3(SO4)2". Zeitschrift für anorganische und allgemeine Chemie. 626 (8): 1723–1724. doi:10.1002/1521-3749(200008)626:8<1723::AID-ZAAC1723>3.0.CO;2-1. ISSN   1521-3749.
  63. Wickleder, Mathias S. (1999). "Halogenidsulfate des Gadoliniums: Synthese und Kristallstruktur von GdClSO4 und GdFSO4". Zeitschrift für anorganische und allgemeine Chemie (in German). 625 (5): 725–728. doi:10.1002/(SICI)1521-3749(199905)625:5<725::AID-ZAAC725>3.0.CO;2-T. ISSN   1521-3749.
  64. Ptáček, Petr (2016-04-13). Apatites and their Synthetic Analogues: Synthesis, Structure, Properties and Applications. BoD – Books on Demand. p. 227. ISBN   978-953-51-2265-4.
  65. Zhao, Yanyan; Wang, Chunxiang; Su, Jing; Wang, Yaxing; Wang, Yanlong; Wang, Shuao; Diwu, Juan; Liu, Zhihong (October 2015). "Insights into the new Th (IV) sulfate fluoride complex: Synthesis, crystal structures, and temperature dependent spectroscopic properties". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 149: 295–303. doi:10.1016/j.saa.2015.04.037. PMID   25965512.
  66. Alcock, N. W.; Roberts, M. M.; Chakravorti, M. C. (1980-03-01). "Structure of potassium catena -di-μ-fluoro-difluorotetraoxo-di-μ-sulphato-diuranate(VI) hydrate". Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry. 36 (3): 687–690. doi:10.1107/S0567740880004141. ISSN   0567-7408.
  67. 1 2 3 4 5 Chakravorti, M.C.; Bharadwaj, P.K. (January 1979). "Fluoro complexes of hexavalent uranium—VII". Journal of Inorganic and Nuclear Chemistry. 41 (8): 1149–1152. doi:10.1016/0022-1902(79)80474-1.
  68. Lussier, Aaron J.; Lopez, Rachel A.K.; Burns, Peter C. (January 2016). "A Revised and Expanded Structure Hierarchy of Natural and Synthetic Hexavalent Uranium Compounds". The Canadian Mineralogist. 54 (1): 177–283. Bibcode:2016CaMin..54..177L. doi:10.3749/canmin.1500078. ISSN   0008-4476.
  69. Mikhailov, Yu. N.; Gorbunova, Yu. E.; Mit'kovskaya, E. V.; Serezhkina, L. B.; Serezhkin, V. N. (2002). "Crystal Structure of Rb[UO2(SO4)F]". Radiochemistry. 44 (4): 315–318. doi:10.1023/A:1020652306275. S2CID   92322197.
  70. 1 2 3 4 5 6 Doran, Michael B.; Cockbain, Ben E.; O'Hare, Dermot (2005). "Structural variation in organically templated uranium sulfate fluorides". Dalton Transactions (10): 1774–80. doi:10.1039/b504457j. ISSN   1477-9226. PMID   15877147.
  71. Olchowka, Jakub; Volkringer, Christophe; Henry, Natacha; Loiseau, Thierry (March 2014). "Crystal structures of tetravalent uranium fluorides obtained in the presence of hydrazine from uranyl source". Journal of Fluorine Chemistry. 159: 1–7. doi:10.1016/j.jfluchem.2013.12.003.