Fluorine azide

Last updated
Fluorine azide
Fluorine azide.svg
Fluorine-azide-3D-balls.png
Names
Other names
triazadienyl fluoride
Identifiers
3D model (JSmol)
PubChem CID
  • InChI=1S/FN3/c1-3-4-2
    Key: AJXWEJAGUZJGRI-UHFFFAOYSA-N
  • [N-]=[N+]=NF
Properties
FN3
Molar mass 61.019 g/mol
AppearanceYellow-green gas
Melting point −139 °C (−218 °F; 134 K)
Boiling point −30 °C (−22 °F; 243 K)
Explosive data
Shock sensitivity Extreme
Friction sensitivity Extreme
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Extremely sensitive explosive
NFPA 704 (fire diamond)
Related compounds
Other cations
Hydrazoic acid
Chlorine azide
Bromine azide
Iodine azide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Fluorine azide or triazadienyl fluoride is a yellow green gas composed of nitrogen and fluorine with formula FN3. [1] Its properties resemble those of ClN3, BrN3, and IN3. [2] The bond between the fluorine atom and the nitrogen is very weak, leading to this substance being very unstable and prone to explosion. [3] Calculations show the F–N–N angle to be around 102° with a straight line of 3 nitrogen atoms. [4]

Contents

The gas boils at –30° and melts at –139 °C. [5]

It was first made by John F. Haller in 1942. [6]

Reactions

Fluorine azide can be made by reacting hydrazoic acid or sodium azide, with fluorine gas. [5] [7]

HN3 + F2 → N3F + HF
NaN3 + F2 → N3F + NaF

Fluorine azide decomposes without explosion at normal temperatures to make dinitrogen difluoride:

2 FN3 → N2F2 + 2 N2. [1]

At higher temperatures such as 1000 °C fluorine azide breaks up into nitrogen monofluoride radical: [7]

FN3 → NF + N2

The FN itself dimerizes on cooling.

2 NF → N2F2

Solid or liquid FN3 can explode, releasing a large amount of energy. A thin film burns at the rate of 1.6 km/s. [8] Due to the explosion hazard, only very small quantities of this substance should be handled at a time. [9]

FN3 adducts can be formed with the Lewis acids boron trifluoride (BF3) and arsenic pentafluoride (AsF5) at -196 °C. These molecules bond with the Nα atom. [10]

Properties

Spectroscopy

ParameterValue [9] Unit
A48131.448MHz
B5713.266MHz
C5095.276MHz
μa1.1
μb0.7

Shape

Distances between atoms are F–N 0.1444 nm, FN=NN 0.1253 nm and FNN=N 0.1132 nm. [9]

Physical

FN3 has a density of 1.3 g/cm3. [11]

FN3 adsorbs on to solid surfaces of potassium fluoride, but not onto lithium fluoride or sodium fluoride. This property was being investigated so that FN3 could boost the energy of solid propellants. [11]

The ultraviolet photoelectric spectrum shows ionisation peaks at 11.01, 13,72, 15.6, 15.9, 16.67, 18.2, and 19.7 eV. Respectively these are assigned to the orbitals: π, nN or nF, nF, πF, nN or σ, π and σ. [3]

Related Research Articles

<span class="mw-page-title-main">Nitrogen</span> Chemical element, symbol N and atomic number 7

Nitrogen is a chemical element; it has symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh in total abundance in the Milky Way and the Solar System. At standard temperature and pressure, two atoms of the element bond to form N2, a colorless and odorless diatomic gas. N2 forms about 78% of Earth's atmosphere, making it the most abundant uncombined element in air. Because of the volatility of nitrogen compounds, nitrogen is relatively rare in the solid parts of the Earth.

In chemistry, azide is a linear, polyatomic anion with the formula N−3 and structure N=N+=N. It is the conjugate base of hydrazoic acid HN3. Organic azides are organic compounds with the formula RN3, containing the azide functional group. The dominant application of azides is as a propellant in air bags.

In chemistry, an interhalogen compound is a molecule which contains two or more different halogen atoms and no atoms of elements from any other group.

<span class="mw-page-title-main">Oxygen fluoride</span> Any binary compound of oxygen and fluorine

Oxygen fluorides are compounds of elements oxygen and fluorine with the general formula OnF2, where n = 1 to 6. Many different oxygen fluorides are known:

<span class="mw-page-title-main">Potassium fluoride</span> Ionic compound (KF)

Potassium fluoride is the chemical compound with the formula KF. After hydrogen fluoride, KF is the primary source of the fluoride ion for applications in manufacturing and in chemistry. It is an alkali halide salt and occurs naturally as the rare mineral carobbiite. Solutions of KF will etch glass due to the formation of soluble fluorosilicates, although HF is more effective.

The chemical element nitrogen is one of the most abundant elements in the universe and can form many compounds. It can take several oxidation states; but the most common oxidation states are -3 and +3. Nitrogen can form nitride and nitrate ions. It also forms a part of nitric acid and nitrate salts. Nitrogen compounds also have an important role in organic chemistry, as nitrogen is part of proteins, amino acids and adenosine triphosphate.

Nitrogen fluorides are compounds of chemical elements nitrogen and fluorine. Many different nitrogen fluorides are known:

<span class="mw-page-title-main">Thiazyl fluoride</span> Chemical compound

Thiazyl fluoride, NSF, is a colourless, pungent gas at room temperature and condenses to a pale yellow liquid at 0.4 °C. Along with thiazyl trifluoride, NSF3, it is an important precursor to sulfur-nitrogen-fluorine compounds. It is notable for its extreme hygroscopicity.

Dinitrogen difluoride is a chemical compound with the formula N2F2. It is a gas at room temperature, and was first identified in 1952 as the thermal decomposition product of the fluorine azide. It has the structure F−N=N−F and exists in both cis and trans isomers, as typical for diimides.

<span class="mw-page-title-main">Pentazenium</span> Polytomic cation (N–N–N–N–N)

In chemistry, the pentazenium cation is a positively-charged polyatomic ion with the chemical formula N+5 and structure N−N−N−N−N. Together with solid nitrogen polymers and the azide anion, it is one of only three poly-nitrogen species obtained in bulk quantities.

Boron monofluoride or fluoroborylene is a chemical compound with the formula BF, one atom of boron and one of fluorine. It is an unstable gas, but it is a stable ligand on transition metals, in the same way as carbon monoxide. It is a subhalide, containing fewer than the normal number of fluorine atoms, compared with boron trifluoride. It can also be called a borylene, as it contains boron with two unshared electrons. BF is isoelectronic with carbon monoxide and dinitrogen; each molecule has 14 electrons.

Nitrogen pentafluoride (NF5) is a theoretical compound of nitrogen and fluorine that is hypothesized to exist based on the existence of the pentafluorides of the atoms below nitrogen in the periodic table, such as phosphorus pentafluoride. Theoretical models of the nitrogen pentafluoride molecule are either a trigonal bipyramidal covalently bound molecule with symmetry group D3h, or NF+
4
F, which would be an ionic solid.

<span class="mw-page-title-main">Cyanogen fluoride</span> Chemical compound

Cyanogen fluoride is an inorganic linear compound which consists of a fluorine in a single bond with carbon, and a nitrogen in a triple bond with carbon. It is a toxic and explosive gas at room temperature. It is used in organic synthesis and can be produced by pyrolysis of cyanuric fluoride or by fluorination of cyanogen.

<span class="mw-page-title-main">Nitrogen monofluoride</span> Chemical compound

Nitrogen monofluoride (fluoroimidogen) is a metastable species that has been observed in laser studies. It is isoelectronic with O2. Like boron monofluoride, it is an instance of the rare multiply-bonded fluorine atom. It is unstable with respect to its formal dimer, dinitrogen difluoride, as well as to its elements, nitrogen and fluorine.

Fluorine forms a great variety of chemical compounds, within which it always adopts an oxidation state of −1. With other atoms, fluorine forms either polar covalent bonds or ionic bonds. Most frequently, covalent bonds involving fluorine atoms are single bonds, although at least two examples of a higher order bond exist. Fluoride may act as a bridging ligand between two metals in some complex molecules. Molecules containing fluorine may also exhibit hydrogen bonding. Fluorine's chemistry includes inorganic compounds formed with hydrogen, metals, nonmetals, and even noble gases; as well as a diverse set of organic compounds. For many elements the highest known oxidation state can be achieved in a fluoride. For some elements this is achieved exclusively in a fluoride, for others exclusively in an oxide; and for still others the highest oxidation states of oxides and fluorides are always equal.

<span class="mw-page-title-main">Difluorodisulfanedifluoride</span> Chemical compound

1,1,1,2-tetrafluorodisulfane, also known as 1,2-difluorodisulfane 1,1-difluoride or just difluorodisulfanedifluoride (FSSF3) is an unstable molecular compound of fluorine and sulfur. The molecule has a pair of sulfur atoms, with one fluorine atom on one sulfur, and three fluorine atoms on the other. It has the uncommon property that all the bond lengths are different. The bond strength is not correlated with bond length but is inversely correlated with the force constant (Badger's rule). The molecule can be considered as sulfur tetrafluoride in which a sulfur atom is inserted into a S-F bond.

<span class="mw-page-title-main">Boron triazide</span> Chemical compound

Boron triazide, also known as triazidoborane, is a thermally unstable compound of boron and nitrogen with a nitrogen content of 92.1 %. Formally, it is the triazido derivative of borane and is a covalent inorganic azide. The high-energy compound, which has the propensity to undergo spontaneous explosive decomposition, was first described in 1954 by Egon Wiberg and Horst Michaud of the University of Munich.

<span class="mw-page-title-main">Sulfuryl diazide</span> Chemical compound

Sulfuryl diazide or sulfuryl azide is a chemical compound with the molecular formula SO2(N3)2. It was first described in the 1920s when its reactions with benzene and p-xylene were studied by Theodor Curtius and Karl Friedrich Schmidt. The compound is reported as having "exceedingly explosive, unpredictable properties" and "in many cases very violent explosions occurred without any apparent reason".

<span class="mw-page-title-main">Pentazenium tetraazidoborate</span> Chemical compound

Pentazenium tetraazidoborate is an extremely unstable chemical compound with the formula N5[B(N3)4]. It is a white solid that violently explodes at room temperature. This compound has a 95.7% nitrogen content which is the second highest known of a chemical compound, exceeding even that of ammonium azide (93.3%) and 1-diazidocarbamoyl-5-azidotetrazole (89.1%), being surpassed only by hydrazoic acid (97.7%).

Homoleptic azido compounds are chemical compounds in which the only anion or ligand is the azide group, -N3. The breadth of homoleptic azide compounds spans nearly the entire periodic table. With rare exceptions azido compounds are highly shock sensitive and need to be handled with the upmost caution. Binary azide compounds can take on several different structures including discrete compounds, or one- two, and three-dimensional nets, leading some to dub them as "polyazides". Reactivity studies of azide compounds are relatively limited due to how sensitive they can be. The sensitivity of these compounds tends to be correlated with the amount of ionic or covalent character the azide-element bond has, with ionic character being far more stable than covalent character. Therefore, compounds such as silver or sodium azide – which have strong ionic character – tend to possess more synthetic utility than their covalent counterparts. A few other notable exceptions include polymeric networks which possess unique magnetic properties, group 13 azides which unlike most other azides decompose to nitride compounds (important materials for semiconductors), other limited uses as synthetic reagents for the transfer for azide groups, or interest in high energy density materials.

References

  1. 1 2 Gipstein, Edward; John F. Haller (1966). "Absorption Spectrum of Fluorine Azide". Applied Spectroscopy. 20 (6): 417–418. Bibcode:1966ApSpe..20..417G. doi:10.1366/000370266774386470. ISSN   0003-7028. S2CID   96337253.
  2. Saxena, P. B. (2007-01-01). Chemistry of Interhalogen Compounds. Discovery Publishing House. p. 96. ISBN   9788183562430 . Retrieved 16 June 2014.
  3. 1 2 Rademacher, Paul; Andreas J. Bittner; Gabriele Schatte; Helge Willner (1988). "Photoelectron Spectrum and Electronic Structure of Triazadienyl Fluoride, N3F". Chemische Berichte. 121 (3): 555–557. doi:10.1002/cber.19881210325. ISSN   0009-2940.
  4. Peters, Nancy J. S.; Leland C. Allen; Raymond A. Firestone (1988). "Fluorine azide and fluorine nitrate: structure and bonding". Inorganic Chemistry. 27 (4): 755–758. doi:10.1021/ic00277a035. ISSN   0020-1669.
  5. 1 2 Gholivand, Khodayar; Gabriele Schatte; Helge Willner (1987). "Properties of triazadienyl fluoride, N3F". Inorganic Chemistry. 26 (13): 2137–2140. doi:10.1021/ic00260a025. ISSN   0020-1669.
  6. Lowe, Derek (21 October 2008). "Things I Won't Work With: Triazadienyl Fluoride". In the Pipeline. Retrieved 15 June 2014.
  7. 1 2 Benard, D. J.; B. K. Winker; T. A. Seder; R. H. Cohn (1989). "Production of nitrogen monofluoride (a1Δ) by dissociation of fluorine azide". The Journal of Physical Chemistry. 93 (12): 4790–4796. doi:10.1021/j100349a022. ISSN   0022-3654.
  8. Seder, T.A.; D.J. Benard (1991). "The decomposition of condensed phase fluorine azide". Combustion and Flame. 85 (3–4): 353–362. doi:10.1016/0010-2180(91)90139-3. ISSN   0010-2180.
  9. 1 2 3 Christen, Dines.; H. G. Mack; G. Schatte; H. Willner (1988). "Structure of triazadienyl fluoride, FN3, by microwave, infrared, and ab initio methods". Journal of the American Chemical Society. 110 (3): 707–712. doi:10.1021/ja00211a007. ISSN   0002-7863.
  10. Schatte, G.; H. Willner (1991). "Die Wechselwirkung von N3F mit Lewis-Säuren und HF. N3F als möglicher Vorläufer für die Synthese von N3+-Salzen = The interaction of N3F with Lewis acids and HF•N3F as possible precursor for the synthesis of N3+ salts". Zeitschrift für Naturforschung B (in German). 46 (4): 483–489. doi: 10.1515/znb-1991-0410 . ISSN   0932-0776. S2CID   97045269.
  11. 1 2 Brener, Nathan E.; Kestner, Neil R.; Callaway, Joseph (December 1990). Theoretical Studies of Highly Energetic CBES Materials: Final Report for the Period 2 March 1987 to 31 May 1987 (PDF). Louisiana State University, Department of Physics and Astronomy. pp. 21–27. Archived (PDF) from the original on March 3, 2016. Retrieved 25 June 2014.