Thorium oxyfluoride

Last updated
Thorium oxyfluoride
Names
Other names
thorium difluoride oxide, thorium fluoride oxide, thorium(IV) difluorideoxide
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 237-045-2
PubChem CID
  • InChI=1S/2FH.O.Th/h2*1H;;/q;;;+2/p-2
    Key: KXAYMKGDXBMOAK-UHFFFAOYSA-L
  • [Th](F)(F)=O
Properties
ThOF
2
Molar mass 286.034 g/mol
Appearancewhite powder
insoluble
Related compounds
Related compounds
Lanthanum oxyfluoride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Thorium oxyfluoride is an inorganic compound of thorium metal, fluorine, and oxygen with the chemical formula ThOF
2
. [1] [2] [3]

Contents

Synthesis

ThF4 + H2O → ThOF2 + 2 HF
ThF4 + ThO2 → 2 ThOF2

Physical properties

The compound forms white, insoluble amorphous powder. [6]

Uses

The compound is used as a protective coating on reflective surfaces. [7]

Related Research Articles

The actinide or actinoid series encompasses at least the 14 metallic chemical elements in the 5f series, with atomic numbers from 89 to 102, actinium through nobelium. The actinide series derives its name from the first element in the series, actinium. The informal chemical symbol An is used in general discussions of actinide chemistry to refer to any actinide.

<span class="mw-page-title-main">Protactinium</span> Chemical element, symbol Pa and atomic number 91

Protactinium is a chemical element; it has symbol Pa and atomic number 91. It is a dense, radioactive, silvery-gray actinide metal which readily reacts with oxygen, water vapor, and inorganic acids. It forms various chemical compounds, in which protactinium is usually present in the oxidation state +5, but it can also assume +4 and even +3 or +2 states. Concentrations of protactinium in the Earth's crust are typically a few parts per trillion, but may reach up to a few parts per million in some uraninite ore deposits. Because of its scarcity, high radioactivity, and high toxicity, there are currently no uses for protactinium outside scientific research, and for this purpose, protactinium is mostly extracted from spent nuclear fuel.

<span class="mw-page-title-main">Thorium</span> Chemical element, symbol Th and atomic number 90

Thorium is a chemical element. It has the symbol Th and atomic number 90. Thorium is a weakly radioactive light silver metal which tarnishes olive gray when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high melting point. Thorium is an electropositive actinide whose chemistry is dominated by the +4 oxidation state; it is quite reactive and can ignite in air when finely divided.

<span class="mw-page-title-main">Oxygen difluoride</span> Chemical compound

Oxygen difluoride is a chemical compound with the formula OF2. As predicted by VSEPR theory, the molecule adopts a bent molecular geometry. It is a strong oxidizer and has attracted attention in rocketry for this reason. With a boiling point of −144.75 °C, OF2 is the most volatile (isolable) triatomic compound. The compound is one of many known oxygen fluorides.

<span class="mw-page-title-main">Xenon tetrafluoride</span> Chemical compound

Xenon tetrafluoride is a chemical compound with chemical formula XeF
4
. It was the first discovered binary compound of a noble gas. It is produced by the chemical reaction of xenon with fluorine:

<span class="mw-page-title-main">Zirconium tetrafluoride</span> Chemical compound

Zirconium(IV) fluoride describes members of a family inorganic compounds with the formula (ZrF4(H2O)x. All are colorless, diamagnetic solids. Anhydrous Zirconium(IV) fluoride' is a component of ZBLAN fluoride glass.

<span class="mw-page-title-main">Selenium tetrafluoride</span> Chemical compound

Selenium tetrafluoride (SeF4) is an inorganic compound. It is a colourless liquid that reacts readily with water. It can be used as a fluorinating reagent in organic syntheses (fluorination of alcohols, carboxylic acids or carbonyl compounds) and has advantages over sulfur tetrafluoride in that milder conditions can be employed and it is a liquid rather than a gas.

<span class="mw-page-title-main">Thorium(IV) fluoride</span> Chemical compound

Thorium(IV) fluoride (ThF4) is an inorganic chemical compound. It is a white hygroscopic powder which can be produced by reacting thorium with fluorine gas. At temperatures above 500 °C, it reacts with atmospheric moisture to produce ThOF2.

<span class="mw-page-title-main">Plutonium hexafluoride</span> Chemical compound

Plutonium hexafluoride is the highest fluoride of plutonium, and is of interest for laser enrichment of plutonium, in particular for the production of pure plutonium-239 from irradiated uranium. This isotope of plutonium is needed to avoid premature ignition of low-mass nuclear weapon designs by neutrons produced by spontaneous fission of plutonium-240.

A tetrafluoride is a chemical compound with four fluorines in its formula.

In chemistry, molecular oxohalides (oxyhalides) are a group of chemical compounds in which both oxygen and halogen atoms are attached to another chemical element A in a single molecule. They have the general formula AOmXn, where X is a halogen. Known oxohalides have fluorine (F), chlorine (Cl), bromine (Br), and/or iodine (I) in their molecules. The element A may be a main group element, a transition element, a rare earth element or an actinide. The term oxohalide, or oxyhalide, may also refer to minerals and other crystalline substances with the same overall chemical formula, but having an ionic structure.

Fluorine forms a great variety of chemical compounds, within which it always adopts an oxidation state of −1. With other atoms, fluorine forms either polar covalent bonds or ionic bonds. Most frequently, covalent bonds involving fluorine atoms are single bonds, although at least two examples of a higher order bond exist. Fluoride may act as a bridging ligand between two metals in some complex molecules. Molecules containing fluorine may also exhibit hydrogen bonding. Fluorine's chemistry includes inorganic compounds formed with hydrogen, metals, nonmetals, and even noble gases; as well as a diverse set of organic compounds. For many elements the highest known oxidation state can be achieved in a fluoride. For some elements this is achieved exclusively in a fluoride, for others exclusively in an oxide; and for still others the highest oxidation states of oxides and fluorides are always equal.

<span class="mw-page-title-main">Thorium compounds</span> Chemical compounds

Many compounds of thorium are known: this is because thorium and uranium are the most stable and accessible actinides and are the only actinides that can be studied safely and legally in bulk in a normal laboratory. As such, they have the best-known chemistry of the actinides, along with that of plutonium, as the self-heating and radiation from them is not enough to cause radiolysis of chemical bonds as it is for the other actinides. While the later actinides from americium onwards are predominantly trivalent and behave more similarly to the corresponding lanthanides, as one would expect from periodic trends, the early actinides up to plutonium have relativistically destabilised and hence delocalised 5f and 6d electrons that participate in chemistry in a similar way to the early transition metals of group 3 through 8: thus, all their valence electrons can participate in chemical reactions, although this is not common for neptunium and plutonium.

<span class="mw-page-title-main">Chlorine trifluoride oxide</span> Chemical compound

Chlorine oxide trifluoride or chlorine trifluoride oxide is a corrosive liquid molecular compound with formula ClOF3. It was developed secretly as a rocket fuel oxidiser.

<span class="mw-page-title-main">Terbium(IV) fluoride</span> Chemical compound

Terbium(IV) fluoride is an inorganic compound with a chemical formula TbF4. It is a white solid that is a strong oxidizer. It is also a strong fluorinating agent, emitting relatively pure atomic fluorine when heated, rather than the mixture of fluoride vapors emitted from cobalt(III) fluoride or cerium(IV) fluoride. It can be produced by the reaction between very pure terbium(III) fluoride and xenon difluoride, chlorine trifluoride or fluorine gas:

<span class="mw-page-title-main">Praseodymium(IV) fluoride</span> Chemical compound

Praseodymium(IV) fluoride (also praseodymium tetrafluoride) is a binary inorganic compound, a highly oxidised metal salt of praseodymium and fluoride with the chemical formula PrF4.

<span class="mw-page-title-main">Seleninyl fluoride</span> Chemical compound

Seleninyl fluoride is an oxyfluoride of selenium with the chemical formula SeOF2.

<span class="mw-page-title-main">Iodyl fluoride</span> Chemical compound

Iodyl fluoride is an inorganic compound of iodine, fluorine, and oxygen with the chemical formula IO2F. The compound was initially synthesized in 1951.

<span class="mw-page-title-main">Protactinium tetrafluoride</span> Chemical compound

Protactinium tetrafluoride is a binary inorganic compound of protactinium metal and fluorine with the chemical formula PaF4.

Thorium trifluoride is a binary inorganic compound of thorium metal and fluorine with the chemical formula ThF3.

References

  1. "THORIUM OXYFLUORIDE". Alfa Chemistry. Archived from the original on 21 March 2023. Retrieved 21 March 2023.
  2. Yemel'Yanov, V. S.; Yevstyukhin, A. I. (22 October 2013). The Metallurgy of Nuclear Fuel: Properties and Principles of the Technology of Uranium, Thorium and Plutonium. Elsevier. p. 369. ISBN   978-1-4831-8602-3 . Retrieved 21 March 2023.
  3. Perry, Dale L. (19 April 2016). Handbook of Inorganic Compounds. CRC Press. p. 427. ISBN   978-1-4398-1462-8 . Retrieved 21 March 2023.
  4. Darnell, A. J. (1960). The Free Energy, Heat, and Entropy of Formation of Thorium Oxyfluoride. Atomics International. p. 1. Retrieved 21 March 2023.
  5. Zachariasen, W. H. (1947). Fluorides of Uranium and Thorium with Lanthanum Fluoride Type of Structure. Atomic Energy Commission. p. 1153. Retrieved 21 March 2023.
  6. Satya, Prakash (2013). Advanced Chemistry of Rare Elements. S. Chand Publishing. p. 436. ISBN   978-81-219-4254-6 . Retrieved 21 March 2023.
  7. Lewis, Robert A. (1 April 2016). Hawley's Condensed Chemical Dictionary. John Wiley & Sons. p. 1339. ISBN   978-1-119-26784-3 . Retrieved 21 March 2023.