Rhenium hexafluoride

Last updated
Rhenium hexafluoride
Rhenium(VI)-fluoride.svg
Names
IUPAC name
rhenium(VI) fluoride
Other names
rhenium hexafluoride
Identifiers
3D model (JSmol)
ECHA InfoCard 100.030.144 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 233-172-2
PubChem CID
UNII
  • InChI=1S/6FH.Re/h6*1H;/q;;;;;;+6/p-6
  • F[Re](F)(F)(F)(F)F
Properties
F6Re
Molar mass 300.20 g/mol
Appearanceliquid, or yellow crystalline solid [1]
Density 4.94g/mL [2]
Melting point 18.5 °C (65.3 °F; 291.6 K) [1]
Boiling point 33.7 °C (92.7 °F; 306.8 K) [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Rhenium hexafluoride, also rhenium(VI) fluoride, (ReF6) is a compound of rhenium and fluorine and one of the seventeen known binary hexafluorides.

Contents

Chemistry

Rhenium hexafluoride is made by combining rhenium heptafluoride with additional rhenium metal at 300 °C in a pressure vessel. [2]

6 ReF
7
+ Re → 7 ReF
6

The compound is a Lewis acid and strong oxidant, adducting potassium fluoride and oxidizing nitric oxide to nitrosyl: [3]

2KF + ReF6K2ReF8
NO + ReF6[NO][ReF6]

Description

Rhenium hexafluoride is a liquid at room temperature. At 18.5 °C, it freezes into a yellow solid. The boiling point is 33.7 °C. [1]

The solid structure measured at −140 °C is orthorhombic space group Pnma. Lattice parameters are a = 9.417  Å, b = 8.570 Å, and c = 4.965 Å. There are four formula units (in this case, discrete molecules) per unit cell, giving a density of 4.94 g·cm−3. [2]

The ReF6 molecule itself (the form important for the liquid or gas phase) has octahedral molecular geometry, which has point group ( Oh ). The Re–F bond length is 1.823 Å. [2]

Use

Rhenium hexafluoride is a commercial material used in the electronics industry for depositing films of rhenium. [3]

Related Research Articles

<span class="mw-page-title-main">Tungsten hexafluoride</span> Chemical compound

Tungsten(VI) fluoride, also known as tungsten hexafluoride, is an inorganic compound with the formula WF6. It is a toxic, corrosive, colorless gas, with a density of about 13 kg/m3 (22 lb/cu yd). It is one of the densest known gases under standard conditions. WF6 is commonly used by the semiconductor industry to form tungsten films, through the process of chemical vapor deposition. This layer is used in a low-resistivity metallic "interconnect". It is one of seventeen known binary hexafluorides.

In chemistry, an interhalogen compound is a molecule which contains two or more different halogen atoms and no atoms of elements from any other group.

<span class="mw-page-title-main">Xenon hexafluoride</span> Chemical compound

Xenon hexafluoride is a noble gas compound with the formula XeF6. It is one of the three binary fluorides of xenon that have been studied experimentally, the other two being XeF2 and XeF4. All known are exergonic and stable at normal temperatures. XeF6 is the strongest fluorinating agent of the series. It is a colorless solid that readily sublimes into intensely yellow vapors.

Antimony pentafluoride is the inorganic compound with the formula SbF5. This colourless, viscous liquid is a strong Lewis acid and a component of the superacid fluoroantimonic acid, formed upon mixing liquid HF with liquid SbF5 in 1:1 ratio. It is notable for its strong Lewis acidity and the ability to react with almost all known compounds.

Tellurium hexafluoride is the inorganic compound of tellurium and fluorine with the chemical formula TeF6. It is a colorless, highly toxic gas with an unpleasant odor.

<span class="mw-page-title-main">Aluminium fluoride</span> Chemical compound

Aluminium fluoride is an inorganic compound with the formula AlF3. It forms hydrates AlF3·xH2O. Anhydrous AlF3 and its hydrates are all colorless solids. Anhydrous AlF3 is used in the production of aluminium metal. Several occur as minerals.

<span class="mw-page-title-main">Technetium hexafluoride</span> Chemical compound

Technetium hexafluoride or technetium(VI) fluoride (TcF6) is a yellow inorganic compound with a low melting point. It was first identified in 1961. In this compound, technetium has an oxidation state of +6, the highest oxidation state found in the technetium halides. In this respect, technetium differs from rhenium, which forms a heptafluoride, ReF7. Technetium hexafluoride occurs as an impurity in uranium hexafluoride, as technetium is a fission product of uranium (spontaneous fission in natural uranium, possible contamination from induced fission inside the reactor in reprocessed uranium). The fact that the boiling point of the hexafluorides of uranium and technetium are very close to each other presents a problem in using fluoride volatility in nuclear reprocessing.

Osmium compounds are compounds containing the element osmium (Os). Osmium forms compounds with oxidation states ranging from −2 to +8. The most common oxidation states are +2, +3, +4, and +8. The +8 oxidation state is notable for being the highest attained by any chemical element aside from iridium's +9 and is encountered only in xenon, ruthenium, hassium, iridium, and plutonium. The oxidation states −1 and −2 represented by the two reactive compounds Na
2
[Os
4
(CO)
13
]
and Na
2
[Os(CO)
4
]
are used in the synthesis of osmium cluster compounds.

<span class="mw-page-title-main">Dioxygenyl</span> Chemical compound

The dioxygenyl(or dioxyl) ion, O+
2
, is a rarely-encountered oxycation in which both oxygen atoms have a formal oxidation state of +1/2. It is formally derived from oxygen by the removal of an electron:

<span class="mw-page-title-main">Rhenium heptafluoride</span> Chemical compound

Rhenium heptafluoride is the compound with the formula ReF7. It is a yellow low melting solid and is the only thermally stable metal heptafluoride. It has a distorted pentagonal bipyramidal structure similar to IF7, which was confirmed by neutron diffraction at 1.5 K. The structure is non-rigid, as evidenced by electron diffraction studies.

A hexafluoride is a chemical compound with the general formula QXnF6, QXnF6m−, or QXnF6m+. Many molecules fit this formula. An important hexafluoride is hexafluorosilicic acid (H2SiF6), which is a byproduct of the mining of phosphate rock. In the nuclear industry, uranium hexafluoride (UF6) is an important intermediate in the purification of this element.

<span class="mw-page-title-main">Iridium hexafluoride</span> Chemical compound

Iridium hexafluoride, also iridium(VI) fluoride, (IrF6) is a compound of iridium and fluorine and one of the seventeen known binary hexafluorides. It is one of only a few compounds with iridium in the oxidation state +6.

<span class="mw-page-title-main">Molybdenum hexafluoride</span> Chemical compound

Molybdenum hexafluoride, also molybdenum(VI) fluoride, is the inorganic compound with the formula MoF6. It is the highest fluoride of molybdenum. It is a colourless solid and melts just below room temperature and boils in 34 °C. It is one of the seventeen known binary hexafluorides.

<span class="mw-page-title-main">Rhodium hexafluoride</span> Chemical compound with formula RhF₆

Rhodium hexafluoride, also rhodium(VI) fluoride, (RhF6) is the inorganic compound of rhodium and fluorine. A black volatile solid, it is a highly reactive material, and a rare example of a rhodium(VI) compound. It is one of seventeen known binary hexafluorides.

Ruthenium hexafluoride, also ruthenium(VI) fluoride (RuF6), is a compound of ruthenium and fluorine and one of the seventeen known binary hexafluorides.

<span class="mw-page-title-main">Osmium hexafluoride</span> Chemical compound

Osmium hexafluoride, also osmium(VI) fluoride, (OsF6) is a compound of osmium and fluorine, and one of the seventeen known binary hexafluorides.

Chromium pentafluoride is the inorganic compound with the chemical formula CrF5. It is a red volatile solid that melts at 34 °C. It is the highest known chromium fluoride, since the hypothetical chromium hexafluoride has not yet been synthesized.

Fluorine forms a great variety of chemical compounds, within which it always adopts an oxidation state of −1. With other atoms, fluorine forms either polar covalent bonds or ionic bonds. Most frequently, covalent bonds involving fluorine atoms are single bonds, although at least two examples of a higher order bond exist. Fluoride may act as a bridging ligand between two metals in some complex molecules. Molecules containing fluorine may also exhibit hydrogen bonding. Fluorine's chemistry includes inorganic compounds formed with hydrogen, metals, nonmetals, and even noble gases; as well as a diverse set of organic compounds. For many elements the highest known oxidation state can be achieved in a fluoride. For some elements this is achieved exclusively in a fluoride, for others exclusively in an oxide; and for still others the highest oxidation states of oxides and fluorides are always equal.

<span class="mw-page-title-main">Platinum tetrafluoride</span> Chemical compound

Platinum tetrafluoride is the inorganic compound with the chemical formula PtF
4
. In the solid state, the compound features platinum(IV) in octahedral coordination geometry.

Rhenium compounds are compounds formed by the transition metal rhenium (Re). Rhenium can form in many oxidation states, and compounds are known for every oxidation state from -3 to +7 except -2, although the oxidation states +7, +4, and +3 are the most common. Rhenium is most available commercially as salts of perrhenate, including sodium and ammonium perrhenates. These are white, water-soluble compounds. The tetrathioperrhenate anion [ReS4] is possible.

References

  1. 1 2 3 4 CRC Handbook of Chemistry and Physics , 90th Edition, CRC Press, Boca Raton, Florida, 2009, ISBN   978-1-4200-9084-0, Section 4, Physical Constants of Inorganic Compounds, p. 4-85.
  2. 1 2 3 4 T. Drews, J. Supeł, A. Hagenbach, K. Seppelt: "Solid State Molecular Structures of Transition Metal Hexafluorides", in: Inorganic Chemistry , 2006, 45 (9), S. 3782–3788; doi : 10.1021/ic052029f; PMID   16634614.
  3. 1 2 Meshri, D. T. (2000). "Fluorine Compounds, Inorganic, Rhenium". Kirk-Othmer Encyclopedia of Chemical Technology. doi:10.1002/0471238961.1808051413051908.a01. ISBN   0471238961.

Further reading