Trirhenium nonachloride

Last updated
Trirhenium nonachloride
Names
IUPAC name
Rhenium(III) chloride
Other names
Rhenium trichloride
Identifiers
3D model (JSmol)
ECHA InfoCard 100.033.610 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 236-987-1
PubChem CID
  • InChI=1S/3ClH.Re/h3*1H;/q;;;+3/p-3
  • ReCl3:Cl[Re](Cl)Cl
  • Re3Cl9:Cl[Re-]12(Cl)([Cl+]3)[Re-]3(Cl)(Cl)([Cl+]4)[Re-]14(Cl)(Cl)([Cl+]2)
Properties
ReCl3
Molar mass 292.57 g/mol
Appearancered, crystalline, nonvolatile solid
Density 4800 kg/m3
Melting point N/A
Boiling point 500 °C (932 °F; 773 K) (decomposes)
hydrolyzes to form Re2O3.xH2O.
Structure
Rhombohedral, hR72
R-3m, No. 166
(trimeric solid and in solution)
(dimeric in acetic acid)
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Corrosive (C)
Safety data sheet (SDS)External MSDS
Related compounds
Other anions
Rhenium tribromide
Rhenium triiodide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Trirhenium nonachloride is a compound with the formula ReCl3, sometimes also written Re3Cl9. It is a dark red hygroscopic solid that is insoluble in ordinary solvents. The compound is important in the history of inorganic chemistry as an early example of a cluster compound with metal-metal bonds. [1] It is used as a starting material for synthesis of other rhenium complexes.

Contents

Structure and physical properties

As shown by X-ray crystallography trirhenium nonachloride consists of Re3Cl12 subunits that share three chloride bridges with adjacent clusters. The interconnected network of clusters forms sheets. Around each Re center are seven ligands, four bridging chlorides, one terminal chloride, and two Re-Re bonds. [2]

Re3Cl12 cluster within ReCl3, shown with full coordination sphere around each chloride. ReCl3 showing full coordination sphere around Cl's.png
Re3Cl12 cluster within ReCl3, shown with full coordination sphere around each chloride.

The hydrate is molecular with the formula Re3Cl9(H2O)3. [3]

The heat of oxidation is evaluated according to the equation:

1/3 Re3Cl9 + 4 OH + 2 OCl → ReO4 + 2 H2O + 5Cl

The enthalpy for this process is 190.7 ± 0.2 kcal/mol. [2]

Preparation and reactions

The compound was discovered in 1932. [4] Trirhenium nonachloride is efficiently prepared by thermal decomposition of rhenium pentachloride or hexachlororhenic(IV) acid: [5]

3 ReCl5 → Re3Cl9 + 3 Cl2

If the sample is vacuum sublimed at 500 °C, the resulting material is comparatively unreactive. The partially hydrated material such as Re3Cl9(H2O)4 [6] can be more useful synthetically. Other synthetic methods include treating rhenium with sulfuryl chloride. This process is sometimes conducted with the addition of aluminium chloride. [2] It is also obtained by heating Re2(O2CCH3)4Cl2 under HCl:

3/2 Re2(O2CCH3)4Cl2 + 6 HCl → Re3Cl9 + 6 HO2CCH3

Reaction of the tri- and pentachlorides gives rhenium tetrachloride:

3 ReCl5 + Re3Cl9 → 6 ReCl4

Related Research Articles

<span class="mw-page-title-main">Samarium(III) chloride</span> Chemical compound

Samarium(III) chloride, also known as samarium trichloride, is an inorganic compound of samarium and chloride. It is a pale yellow salt that rapidly absorbs water to form a hexahydrate, SmCl3.6H2O. The compound has few practical applications but is used in laboratories for research on new compounds of samarium.

In chemistry, water(s) of crystallization or water(s) of hydration are water molecules that are present inside crystals. Water is often incorporated in the formation of crystals from aqueous solutions. In some contexts, water of crystallization is the total mass of water in a substance at a given temperature and is mostly present in a definite (stoichiometric) ratio. Classically, "water of crystallization" refers to water that is found in the crystalline framework of a metal complex or a salt, which is not directly bonded to the metal cation.

<span class="mw-page-title-main">Europium(III) chloride</span> Chemical compound

Europium(III) chloride is an inorganic compound with the formula EuCl3. The anhydrous compound is a yellow solid. Being hygroscopic it rapidly absorbs water to form a white crystalline hexahydrate, EuCl3·6H2O, which is colourless. The compound is used in research.

<span class="mw-page-title-main">Dysprosium(III) chloride</span> Chemical compound

Dysprosium(III) chloride (DyCl3), also known as dysprosium trichloride, is a compound of dysprosium and chlorine. It is a white to yellow solid which rapidly absorbs water on exposure to moist air to form a hexahydrate, DyCl3·6H2O. Simple rapid heating of the hydrate causes partial hydrolysis to an oxychloride, DyOCl.

<span class="mw-page-title-main">Tantalum(V) chloride</span> Chemical compound

Tantalum(V) chloride, also known as tantalum pentachloride, is an inorganic compound with the formula TaCl5. It takes the form of a white powder and is commonly used as a starting material in tantalum chemistry. It readily hydrolyzes to form tantalum(V) oxychloride (TaOCl3) and eventually tantalum pentoxide (Ta2O5); this requires that it be synthesised and manipulated under anhydrous conditions, using air-free techniques.

<span class="mw-page-title-main">Erbium(III) chloride</span> Chemical compound

Erbium(III) chloride is a violet solid with the formula ErCl3. It is used in the preparation of erbium metal.

<span class="mw-page-title-main">Gadolinium(III) chloride</span> Chemical compound

Gadolinium(III) chloride, also known as gadolinium trichloride, is GdCl3. It is a colorless, hygroscopic, water-soluble solid. The hexahydrate GdCl3∙6H2O is commonly encountered and is sometimes also called gadolinium trichloride. Gd3+ species are of special interest because the ion has the maximum number of unpaired spins possible, at least for known elements. With seven valence electrons and seven available f-orbitals, all seven electrons are unpaired and symmetrically arranged around the metal. The high magnetism and high symmetry combine to make Gd3+ a useful component in NMR spectroscopy and MRI.

<span class="mw-page-title-main">Ruthenium(III) chloride</span> Chemical compound

Ruthenium(III) chloride is the chemical compound with the formula RuCl3. "Ruthenium(III) chloride" more commonly refers to the hydrate RuCl3·xH2O. Both the anhydrous and hydrated species are dark brown or black solids. The hydrate, with a varying proportion of water of crystallization, often approximating to a trihydrate, is a commonly used starting material in ruthenium chemistry.

<span class="mw-page-title-main">Chromium(II) chloride</span> Chemical compound

Chromium(II) chloride describes inorganic compounds with the formula CrCl2(H2O)n. The anhydrous solid is white when pure, however commercial samples are often grey or green; it is hygroscopic and readily dissolves in water to give bright blue air-sensitive solutions of the tetrahydrate Cr(H2O)4Cl2. Chromium(II) chloride has no commercial uses but is used on a laboratory-scale for the synthesis of other chromium complexes.

Titanium(III) chloride is the inorganic compound with the formula TiCl3. At least four distinct species have this formula; additionally hydrated derivatives are known. TiCl3 is one of the most common halides of titanium and is an important catalyst for the manufacture of polyolefins.

<span class="mw-page-title-main">Vanadium(III) chloride</span> Chemical compound

Vanadium(III) chloride describes the inorganic compound with the formula VCl3 and its hydrates. It forms a purple anhydrous form and a green hexahydrate [VCl2(H2O)4]Cl·2H2O. These hygroscopic salts are common precursors to other vanadium(III) complexes and is used as a mild reducing agent.

Technetium compounds are chemical compounds containing the chemical element technetium. Technetium can form multiple oxidation states, but often forms in the +4 and +7 oxidation states. Because technetium is radioactive, technetium compounds are extremely rare on Earth.

<span class="mw-page-title-main">Gallium(III) chloride</span> Chemical compound

Gallium(III) chloride is an inorganic chemical compound with the formula GaCl3 which forms a monohydrate, GaCl3·H2O. Solid gallium(III) chloride is a deliquescent white solid and exists as a dimer with the formula Ga2Cl6. It is colourless and soluble in virtually all solvents, even alkanes, which is truly unusual for a metal halide. It is the main precursor to most derivatives of gallium and a reagent in organic synthesis.

There are three sets of Indium halides, the trihalides, the monohalides, and several intermediate halides. In the monohalides the oxidation state of indium is +1 and their proper names are indium(I) fluoride, indium(I) chloride, indium(I) bromide and indium(I) iodide.

<span class="mw-page-title-main">Rhenium pentachloride</span> Chemical compound

Rhenium pentachloride is an inorganic compound of chlorine and rhenium. The compound has the formula Re2Cl10 but it is usually referred to as rhenium pentachloride. It is a red-brown solid.

<span class="mw-page-title-main">Bromopentacarbonylrhenium(I)</span> Chemical compound

Bromopentacarbonylrhenium(I) is an inorganic compound of rhenium, commonly used for the syntheses of other rhenium complexes.

<span class="mw-page-title-main">Arsenic pentachloride</span> Chemical compound

Arsenic pentachloride is a chemical compound of arsenic and chlorine. This compound was first prepared in 1976 through the UV irradiation of arsenic trichloride, AsCl3, in liquid chlorine at −105 °C. AsCl5 decomposes at around −50 °C. The structure of the solid was finally determined in 2001. AsCl5 is similar to phosphorus pentachloride, PCl5 in having a trigonal bipyramidal structure where the equatorial bonds are shorter than the axial bonds (As-Cleq = 210.6 pm, 211.9 pm; As-Clax= 220.7 pm).

<span class="mw-page-title-main">Vanadium(V) chloride chlorimide</span> Chemical compound

Vanadium (V) chloride chlorimide is a chemical compound containing vanadium in a +5 oxidation state bound to three chlorine atoms and with a double bond to a chlorimide group (=NCl). It has formula VNCl4. This can be also considered as a chloroiminato complex.

Lanthanide trichlorides are a family of inorganic compound with the formula LnCl3, where Ln stands for a lanthanide metal. The trichlorides are standard reagents in applied and academic chemistry of the lanthanides. They exist as anhydrous solids and as hydrates.

Manganese(III) chloride is the hypothetical inorganic compound with the formula MnCl3.

References

  1. Cotton, F. A.; Walton, R. A. "Multiple Bonds Between Metal Atoms" Oxford (Oxford): 1993. ISBN   0-19-855649-7.
  2. 1 2 3 Colton, R. Chemistry of rhenium and technetium. 965.
  3. Irmler, Manfred; Meyer, Gerd (1987). "Rhenium trichloride, ReCl3, and its 5/3-hydrate synthesis, crystal structure, and thermal expansion". Zeitschrift für Anorganische und Allgemeine Chemie. 552 (9): 81–89. doi:10.1002/zaac.19875520908.
  4. Geilnann, W.; Wriuce, F. W.; Biltz. W.: Nachr. Ges. Wiss. Gottingen 1932, 579.
  5. Lincoln, R.; Wilkinson, G. (1980). "Trirhenium Nonachloride". Inorg. Synth. 20: 44. doi:10.1002/9780470132517.ch12. ISBN   978-0-470-13251-7.
  6. Irmler, Manfred; Meyer, Gerd (1987). "Rhenium trichloride, ReCl3, and its 5/3-hydrate synthesis, crystal structure, and thermal expansion". Zeitschrift für Anorganische und Allgemeine Chemie. 552 (9): 81–89. doi:10.1002/zaac.19875520908.