Sulfur tetrachloride

Last updated
Sulfur tetrachloride
Sulfur tetrachloride.svg
IUPAC name
Sulfur(IV) chloride
3D model (JSmol)
ECHA InfoCard 100.149.178 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
  • InChI=1/Cl4S/c1-5(2,3)4
  • ClS(Cl)(Cl)Cl
Molar mass 173.87
AppearanceWhite powder
Melting point −31 °C (−24 °F; 242 K)
Boiling point −20 °C (−4 °F; 253 K) (decomposes)
soluble in water
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-pollu.svg
H314, H400
P260, P264, P273, P280, P301+P330+P331, P303+P361+P353, P304+P340, P305+P351+P338, P310, P321, P363, P391, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Sulfur tetrachloride is an inorganic compound with chemical formula SCl4. It has only been obtained as an unstable pale yellow solid. The corresponding SF4 is a stable, useful reagent.


Preparation and structure

It is obtained by treating sulfur dichloride with chlorine at 193 K:






It melts with simultaneous decomposition above −20 °C. [1]

Its solid structure is uncertain. It is probably the salt SCl3+Cl, since related salts are known with noncoordinating anions. [2] [3] In contrast to this tetrachloride, SF4 is a neutral molecule. [4]


It decomposes above −30 °C (242 K) to sulfur dichloride and chlorine.






It hydrolyzes readily:






Sulfur tetrachloride reacts with water, producing hydrogen chloride and sulfur dioxide through the hydrolysis process. Thionyl chloride is an implied intermediate. [5]











Related Research Articles

<span class="mw-page-title-main">Titanium tetrachloride</span> Inorganic chemical compound

Titanium tetrachloride is the inorganic compound with the formula TiCl4. It is an important intermediate in the production of titanium metal and the pigment titanium dioxide. TiCl4 is a volatile liquid. Upon contact with humid air, it forms thick clouds of titanium dioxide and hydrochloric acid, a reaction that was formerly exploited for use in smoke machines. It is sometimes referred to as "tickle" or "tickle 4" due to the phonetic resemblance of its molecular formula to the word.

<span class="mw-page-title-main">Thionyl chloride</span> Inorganic compound (SOCl2)

Thionyl chloride is an inorganic compound with the chemical formula SOCl2. It is a moderately volatile, colourless liquid with an unpleasant acrid odour. Thionyl chloride is primarily used as a chlorinating reagent, with approximately 45,000 tonnes per year being produced during the early 1990s, but is occasionally also used as a solvent. It is toxic, reacts with water, and is also listed under the Chemical Weapons Convention as it may be used for the production of chemical weapons.

<span class="mw-page-title-main">Phosphorus pentachloride</span> Chemical compound

Phosphorus pentachloride is the chemical compound with the formula PCl5. It is one of the most important phosphorus chlorides, others being PCl3 and POCl3. PCl5 finds use as a chlorinating reagent. It is a colourless, water-sensitive and moisture-sensitive solid, although commercial samples can be yellowish and contaminated with hydrogen chloride.

<span class="mw-page-title-main">Sulfuryl chloride</span> Chemical compound

Sulfuryl chloride is an inorganic compound with the formula SO2Cl2. At room temperature, it is a colorless liquid with a pungent odor. Sulfuryl chloride is not found in nature, as can be inferred from its rapid hydrolysis.

<span class="mw-page-title-main">Sulfur dichloride</span> Chemical compound

Sulfur dichloride is the chemical compound with the formula SCl2. This cherry-red liquid is the simplest sulfur chloride and one of the most common, and it is used as a precursor to organosulfur compounds. It is a highly corrosive and toxic substance, and it reacts on contact with water to form chlorine-containing acids.

<span class="mw-page-title-main">Zirconium(IV) chloride</span> Chemical compound

Zirconium(IV) chloride, also known as zirconium tetrachloride, is an inorganic compound frequently used as a precursor to other compounds of zirconium. This white high-melting solid hydrolyzes rapidly in humid air.

<span class="mw-page-title-main">Tellurium tetrachloride</span> Chemical compound

Tellurium tetrachloride is the inorganic compound with the empirical formula TeCl4. The compound is volatile, subliming at 200 °C at 0.1 mmHg. Molten TeCl4 is ionic, dissociating into TeCl3+ and Te2Cl102−.

<span class="mw-page-title-main">Disulfur dichloride</span> Chemical compound

Disulfur dichloride is the inorganic compound of sulfur and chlorine with the formula S2Cl2.

<span class="mw-page-title-main">Tritellurium dichloride</span> Chemical compound

Tritellurium dichloride is the inorganic compound with the formula Te3Cl2. It is one of the more stable lower chlorides of tellurium.

Antimony pentasulfide is an inorganic compound of antimony and sulfur, also known as antimony red. It is a nonstoichiometric compound with a variable composition. Its structure is unknown. Commercial samples are usually contaminated with sulfur, which may be removed by washing with carbon disulfide in a Soxhlet extractor.

<span class="mw-page-title-main">Selenium tetrachloride</span> Chemical compound

Selenium tetrachloride is the inorganic compound composed with the formula SeCl4. This compound exists as yellow to white volatile solid. It is one of two commonly available selenium chlorides, the other example being selenium monochloride, Se2Cl2. SeCl4 is used in the synthesis of other selenium compounds.

Germanium dichloride is a chemical compound of germanium and chlorine with the formula GeCl2. It is a solid and contains germanium in the +2 oxidation state.

<span class="mw-page-title-main">Polonium dichloride</span> Chemical compound

Polonium dichloride is a chemical compound of the radioactive metalloid, polonium and chlorine. Its chemical formula is PoCl2. It is an ionic salt.

<span class="mw-page-title-main">Metal bis(trimethylsilyl)amides</span>

Metal bis(trimethylsilyl)amides are coordination complexes composed of a cationic metal with anionic bis(trimethylsilyl)amide ligands and are part of a broader category of metal amides.

<span class="mw-page-title-main">Lead compounds</span> Type of compound

Compounds of lead exist with lead in two main oxidation states: +2 and +4. The former is more common. Inorganic lead(IV) compounds are typically strong oxidants or exist only in highly acidic solutions.

Polonium tetrachloride (also known as polonium(IV) chloride) is a chemical compound with the formula PoCl4. The salt is a hygroscopic bright yellow crystalline solid at room temperature. Above 200 °C, it tends to decompose into polonium dichloride and excess chlorine, similar to selenium tetrachloride and tellurium tetrachloride.

<span class="mw-page-title-main">Uranium pentachloride</span> Chemical compound

Uranium pentachloride is an inorganic chemical compound composed of uranium in the +5 oxidation state and five chlorine atoms.

<span class="mw-page-title-main">Lead(IV) chloride</span> Chemical compound

Lead tetrachloride, also known as lead(IV) chloride, has the molecular formula PbCl4. It is a yellow, oily liquid which is stable below 0 °C, and decomposes at 50 °C. It has a tetrahedral configuration, with lead as the central atom. The Pb–Cl covalent bonds have been measured to be 247 pm and the bond energy is 243 kJ⋅mol−1.

<span class="mw-page-title-main">Titanium(IV) nitrate</span> Chemical compound

Titanium nitrate is the inorganic compound with formula Ti(NO3)4. It is a colorless, diamagnetic solid that sublimes readily. It is an unusual example of a volatile binary transition metal nitrate. Ill defined species called titanium nitrate are produced upon dissolution of titanium or its oxides in nitric acid.

<span class="mw-page-title-main">Protactinium(IV) chloride</span> Chemical compound

Protactinium(IV) chloride is an inorganic compound. It is an actinide halide, composed of protactinium and chlorine. It is radioactive, and has the chemical formula of PaCl4. It is a chartreuse-coloured (yellowish-green) crystal of the tetragonal crystal system.


  1. Georg Brauer: Handbuch der Präparativen Anorganischen Chemie. (in German)
  2. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  3. Christian, Beverly H.; Collins, Michael J.; Gillespie, Ronald J.; Sawyer, Jeffery F. "Preparations, Raman spectra, and crystal structures of (SCl3)(SbCl6), (SeCl3)(SbCl6), (SBr1.2Cl1.8)(SbCl6), (TeCl3)(AlCl4) (triclinic modification), (TeCl3)(SbF6), (TeCl3)(AsF6), and (TeF3)2(SO4)" Inorganic Chemistry 1986, volume 25, 777-88. doi : 10.1021/ic00226a012
  4. Goettel, J. T., Kostiuk, N. and Gerken, M. (2013), The Solid-State Structure of SF4: The Final Piece of the Puzzle . Angew. Chem. Int. Ed., 52: 8037–8040. doi : 10.1002/anie.201302917
  5. Holleman-Wiberg, Lehrbuch der Anorganischen Chemie, 101. Auflage, de Gruyter Verlag 1995 ISBN   3-11-012641-9 (in German)