Carbonate chloride

Last updated

The carbonate chlorides are double salts containing both carbonate and chloride anions. Quite a few minerals are known. Several artificial compounds have been made. Some complexes have both carbonate and chloride ligands. They are part of the family of halocarbonates. In turn these halocarbonates are a part of mixed anion materials.

Contents

The carbonate chlorides do not have a bond from chlorine to carbon, however "chlorocarbonate" has also been used to refer to the chloroformates which contain the group ClC(O)O-.

Formation

Natural

Scapolite is produced in nature by metasomatism, where hot high pressure water solutions of carbon dioxide and sodium chloride modify plagioclase. [1]

Chloroartinite is found in Sorel cements exposed to air. [2]

Minerals

In 2016 27 chloride containing carbonate minerals were known. [3]

nameformulacrystal systemspace groupunit celldensityOptics refractive indexRaman spectrumcommentsreference
Alexkhomyakovite K6(Ca2Na)(CO3)5Cl∙6H2OhexagonalP63/mcma=9.2691, c=15.8419, V=1178.72 Z = 22.25uniaxial (–), ω=1.543, ε=1.476 [4]
Ashburtonite HPb4Cu4(Si4O12)(HCO3)4(OH)4Cl [3]
Balliranoite (Na,K)6Ca2(Si6Al6O24)Cl2(CO3)hexagonalP63a=12.695 c=5.325 V=743.2 Z=12.48uniaxial (+), ω=1.523, ε=1.525 [5]
Barstowite Pb4(CO3)Cl6.H2O
Chlorartinite Mg2(CO3)Cl(OH).3H2O
Chlormagaluminite (Mg,Fe2+)4Al2(OH)12(Cl, 0.5 CO3)2·2H2O6/mmm1.98-2.09ε=1.560 ω=1.540 [6]
Davyne can substitute CO3 for SO4 [7]
Decrespignyite-(Y) Y4Cu(CO3)4Cl(OH)5·2H2OV4 bending 694, 718 and 746; V2 bending 791, 815, 837 and 849;v3 antisymmetric stretching 1391, 1414, 1489, 1547; also OH stretching [8] light blue [9]
Defernite Ca3CO3(OH,Cl)4.H2O
Hanksite Na22K(SO4)9(CO3)2ClhexagonalP63/ma = 10.46 Å

c = 21.19 Å; Z = 2

iowaite Mg6Fe2(Cl,(CO3)0.5)(OH)16·4H2O [10]
Kampfite Ba12(Si11Al5)O31(CO3)8Cl5monoclinicCca = 31.2329, b=5.2398, c=9.0966

β = 106.933°

uniaxial (–), nω = 1.642 nε = 1.594 [11]
Marialite Na4(AlSi3O8)3(Cl2,CO3,SO4)
Mineevite-(Y) Na25BaY2(CO3)11(HCO3)4(SO4)2F2Cl [12]
Northupite Na3Mg(CO3)2CloctahedralFd3Z=161.514v4 bending 714; v3 antisymmetric stretching 1554 [8] [13] [14]
Phosgenite Pb2CO3Cl2tetragonala=8.15 c=8.87 [13]
Reederite-(Y) Na15Y2(CO3)9(SO3F)Cl [12]
Sakhaite (with Harkerite)Ca48Mg16Al(SiO3OH)4(CO3)16(BO3)28·(H2O)3(HCl)3or Ca12Mg4(BO3)7(CO3)4Cl(OH)2·H2O [3]
Scapolite Ca3Na5[Al8Si16O48]Cl(CO3)P42/na=12.07899 c=7.583467 V=1106.443 [15]
Tatarskite Ca6Mg2(SO4)2(CO3)2(OH)4Cl4•7H2OorthorhombicBiaxial (-) nα = 1.567 nβ = 1.654 nγ = 1.722 [16]
Tunisite NaCa2Al4(CO3)4Cl(OH)8tetragonalP4/nmma=11.198 c=6.5637 Z=2
Vasilyevite (Hg2)10O6I3Br2Cl(CO3)P1 overbara 9.344, b 10.653, c 18.265, α=93.262 β=90.548 γ=115.422° V=1638.3 Z=29.57

Artificial

nameformulacrystal system space group unit cell in Ådensitycommentreference
K5Na2Cu24(CO3)16Cl3(OH)20•12H2OcubicF23a=15.463 V=3697.5 Z=23.044dark blue [17]
Y8O(OH)15(CO3)3Cl1197.88hexagonalP63a=9.5089 c=14.6730 Z=2 V=1148.973.462 [18]
Lu8O(OH)15(CO3)3Cl1886.32hexagonalP63a=9.354 c=14.415 V=1092.3 Z=25.689colourless [19]
Y3(OH)6(CO3)ClcubicIm3ma=12.66 V=2032 Z=83.035colourless [20]
Dy3(OH)6(CO3)ClcubicIm3a=12.4754 V=1941.6 Z=84.687colourless [20]
Er3(OH)6(CO3)ClcubicIm3ma=12.4127 V=1912.5 Z=84.857pink [20]
K{Mg(H2O)6}2[Ru2(CO3)4Cl2]·4H2O889.06monoclinicP21/ca=11.6399 b=11.7048 c=11.8493 β=119.060 V=1411.6 Z=22.092red-brown [21]
K2[{Mg(H2O)4}2Ru2(CO3)4(H2O)Cl]Cl2·2H2O880.58orthorhombicFmm2a=14.392 b=15.699 c=10.741 V=2426.8 Z=42.391dark brown [21]
trisodium cobalt dicarbonate chlorideNa3Co(CO3)2ClcubicFd3a=13.9959 Z=162.75 spin-frustrated antiferromagnetic [3] [22]
trisodium manganese dicarbonate chlorideNa3Mn(CO3)2Clcubica=14.163brown [23]
di-magnesium hexahydrate trihydrogencarbonate chlorideMg2(H2O)6(HCO3)3ClR3ca=8.22215 c=39.5044 V=2312.85 Z=61.61decompose 125 °C [2]
tripotassium tricalcium selenite tricarbonate chlorideK3Ca3(SeO3)(CO3)3Cl579.97hexagonalP63a=10.543 c=7.060 V=706.0 Z=22.991 [24]
LiBa9[Si10O25]Cl7(CO3)Z=23.85layer silicate [25] [26]
Ba3Cl4CO3orthorhombicPnmaa=8.407, b=9.589, c=12.483 Z=4 [27]

Complexes

The "lanthaballs" are lanthanoid atom clusters held together by carbonate and other ligands. They can form chlorides. Examples are [La13(ccnm)6(CO3)14(H2O)6(phen)18] Cl3(CO3)·25H2O where ccnm is carbamoylcyanonitrosomethanide and phen is 1,10-phenanthroline. Praseodymium (Pr) or cerium (Ce) can substitute for lanthanum (La). [28] Other lanthanide cluster compounds include :(H3O)6[Dy76O10(OH)138(OAc)20(L)44(H2O)34]•2CO3•4 Cl2•L•2OAc (nicknamed Dy76) and (H3O)6[Dy48O6(OH)84(OAc)4(L)15(hmp)18(H2O)20]•CO3•14Cl•2H2O (termed Dy48-T) with OAc=acetate, and L=3-furancarboxylate and Hhmp=2,2-bis(hydroxymethyl)propionic acid. [29]

Platinum can form complexes with carbonate and chloride ligands, in addition to an amino acid. Examples include the platinum compound [Pt(gluH)Cl(CO3)]2.2H2O gluH=glutamic acid, and Na[Pt(gln)Cl2(CO3)].H2O gln=glutamine. [30] Rhodium complexes include Rh2(bipy)2(CO3)2Cl (bipy=bipyridine) [31]

Related Research Articles

<span class="mw-page-title-main">Calcium carbonate</span> Chemical compound

Calcium carbonate is a chemical compound with the chemical formula CaCO3. It is a common substance found in rocks as the minerals calcite and aragonite, most notably in chalk and limestone, eggshells, gastropod shells, shellfish skeletons and pearls. Materials containing much calcium carbonate or resembling it are described as calcareous. Calcium carbonate is the active ingredient in agricultural lime and is created when calcium ions in hard water react with carbonate ions to create limescale. It has medical use as a calcium supplement or as an antacid, but excessive consumption can be hazardous and cause hypercalcemia and digestive issues.

<span class="mw-page-title-main">Magnesium carbonate</span> Chemical compound

Magnesium carbonate, MgCO3, is an inorganic salt that is a colourless or white solid. Several hydrated and basic forms of magnesium carbonate also exist as minerals.

Iron(III) chloride describes the inorganic compounds with the formula FeCl3(H2O)x. Also called ferric chloride, these compounds are available both in anhydrous and hydrated forms which are both hygroscopic. They are common sources of iron in its +3 oxidation state. The anhydrous derivative is a Lewis acid, while the hydrate is a mild oxidizing agent. It is used as a water cleaner and as an etchant for metals.

<span class="mw-page-title-main">Zinc chloride</span> Chemical compound

Zinc chloride is the name of inorganic chemical compounds with the formula ZnCl2. It forms hydrates. Zinc chloride, anhydrous and its hydrates are colorless or white crystalline solids, and are highly soluble in water. Five hydrates of zinc chloride are known, as well as four forms of anhydrous zinc chloride. This salt is hygroscopic and even deliquescent. Zinc chloride finds wide application in textile processing, metallurgical fluxes, and chemical synthesis. No mineral with this chemical composition is known aside from the very rare mineral simonkolleite, Zn5(OH)8Cl2·H2O.

<span class="mw-page-title-main">Barium chloride</span> Chemical compound

Barium chloride is an inorganic compound with the formula BaCl2. It is one of the most common water-soluble salts of barium. Like most other water-soluble barium salts, it is a white powder, highly toxic, and imparts a yellow-green coloration to a flame. It is also hygroscopic, converting to the dihydrate BaCl2·2H2O, which are colourless crystals with a bitter salty taste. It has limited use in the laboratory and industry.

In chemistry, water(s) of crystallization or water(s) of hydration are water molecules that are present inside crystals. Water is often incorporated in the formation of crystals from aqueous solutions. In some contexts, water of crystallization is the total mass of water in a substance at a given temperature and is mostly present in a definite (stoichiometric) ratio. Classically, "water of crystallization" refers to water that is found in the crystalline framework of a metal complex or a salt, which is not directly bonded to the metal cation.

<span class="mw-page-title-main">Manganese(II) chloride</span> Chemical compound

Manganese(II) chloride is the dichloride salt of manganese, MnCl2. This inorganic chemical exists in the anhydrous form, as well as the dihydrate (MnCl2·2H2O) and tetrahydrate (MnCl2·4H2O), with the tetrahydrate being the most common form. Like many Mn(II) species, these salts are pink, with the paleness of the color being characteristic of transition metal complexes with high spin d5 configurations.

<span class="mw-page-title-main">Copper(I) chloride</span> Chemical compound

Copper(I) chloride, commonly called cuprous chloride, is the lower chloride of copper, with the formula CuCl. The substance is a white solid sparingly soluble in water, but very soluble in concentrated hydrochloric acid. Impure samples appear green due to the presence of copper(II) chloride (CuCl2).

<span class="mw-page-title-main">Copper(II) chloride</span> Chemical compound

Copper(II) chloride, also known as cupric chloride, is an inorganic compound with the chemical formula CuCl2. The monoclinic yellowish-brown anhydrous form slowly absorbs moisture to form the orthorhombic blue-green dihydrate CuCl2·2H2O, with two water molecules of hydration. It is industrially produced for use as a co-catalyst in the Wacker process.

<span class="mw-page-title-main">Nickel(II) chloride</span> Chemical compound

Nickel(II) chloride (or just nickel chloride) is the chemical compound NiCl2. The anhydrous salt is yellow, but the more familiar hydrate NiCl2·6H2O is green. Nickel(II) chloride, in various forms, is the most important source of nickel for chemical synthesis. The nickel chlorides are deliquescent, absorbing moisture from the air to form a solution. Nickel salts have been shown to be carcinogenic to the lungs and nasal passages in cases of long-term inhalation exposure.

<span class="mw-page-title-main">Tin(II) chloride</span> Chemical compound

Tin(II) chloride, also known as stannous chloride, is a white crystalline solid with the formula SnCl2. It forms a stable dihydrate, but aqueous solutions tend to undergo hydrolysis, particularly if hot. SnCl2 is widely used as a reducing agent (in acid solution), and in electrolytic baths for tin-plating. Tin(II) chloride should not be confused with the other chloride of tin; tin(IV) chloride or stannic chloride (SnCl4).

<span class="mw-page-title-main">Hexafluorosilicic acid</span> Octahedric silicon compound

Hexafluorosilicic acid is an inorganic compound with the chemical formula H
2
SiF
6
. Aqueous solutions of hexafluorosilicic acid consist of salts of the cation and hexafluorosilicate anion. These salts and their aqueous solutions are colorless.

Friedel's salt is an anion exchanger mineral belonging to the family of the layered double hydroxides (LDHs). It has affinity for anions as chloride and iodide and is capable of retaining them to a certain extent in its crystallographical structure.

Eudialyte group is a group of complex trigonal zircono- and, more rarely, titanosilicate minerals with general formula [N(1)N(2)N(3)N(4)N(5)]3[M(1a)M(1b)]3M(2)3M(4)Z3[Si24O72]O'4X2, where N(1) and N(2) and N(3) and N(5) = Na+ and more rarely H3O+ or H2O, N(4) = Na+, Sr2+, Mn2+ and more rarely H3O+ or H2O or K+ or Ca2+ or REE3+ (rare earth elements), M(1) and M(1b) = Ca2+, M(1a) = Ca2+ or Mn2+ or Fe2+, M(2) = Fe (both II and III), Mn and rarely Na+, K+ or Zr4+, M(3) = Si, Nb and rarely W, Ti and [] (vacancy), M(4) = Si and or rarely [], Z Zr4+ and or rarely Ti4+, and X = OH, Cl and more rarely CO32− or F. Some of the eudialyte-like structures can even be more complex, however, in general, its typical feature is the presence of [Si3O9]6− and [Si9O27]18− ring silicate groups. Space group is usually R3m or R-3m but may be reduced to R3 due to cation ordering. Like other zirconosilicates, the eudialyte group minerals possess alkaline ion-exchange properties, as microporous materials.

Clearcreekite is a carbonate mineral, polymorphous with peterbaylissite. The chemical formula of clearcreekite is Hg1+3CO3(OH)∙2H2O. It has a pale greenish yellow color and streak with tabular subhedral crystals and good cleavage on {001}. It is transparent with vitreous luster and uneven fracture. Its density (calculated from the idealized formula) is 6.96 g/cm3. The mineral is monoclinic with the space group P2/c. Clearcreekite is an extremely rare mineral from the Clear Creek mercury mine, New Idria district, San Benito County, California. It was probably formed after the alteration of other mercury minerals such as cinnabar. The mineral is named after the locality where it was found.

<span class="mw-page-title-main">Fluorocarbonate</span> Class of chemical compounds

A carbonate fluoride, fluoride carbonate, fluorocarbonate or fluocarbonate is a double salt containing both carbonate and fluoride. The salts are usually insoluble in water, and can have more than one kind of metal cation to make more complex compounds. Rare-earth fluorocarbonates are particularly important as ore minerals for the light rare-earth elements lanthanum, cerium and neodymium. Bastnäsite is the most important source of these elements. Other artificial compounds are under investigation as non-linear optical materials and for transparency in the ultraviolet, with effects over a dozen times greater than Potassium dideuterium phosphate.

The borate carbonates are mixed anion compounds containing both borate and carbonate ions. Compared to mixed anion compounds containing halides, these are quite rare. They are hard to make, requiring higher temperatures, which are likely to decompose carbonate to carbon dioxide. The reason for the difficulty of formation is that when entering a crystal lattice, the anions have to be correctly located, and correctly oriented. They are also known as borocarbonates. Although these compounds have been termed carboborate, that word also refers to the C=B=C5− anion, or CB11H12 anion. This last anion should be called 1-carba-closo-dodecaborate or monocarba-closo-dodecaborate.

<span class="mw-page-title-main">Sulfate carbonate</span> Class of chemical compounds

The sulfate carbonates are a compound carbonates, or mixed anion compounds that contain sulfate and carbonate ions. Sulfate carbonate minerals are in the 7.DG and 5.BF Nickel-Strunz groupings.

Antigorite Monoclinic mineral

Antigorite is a lamellated, monoclinic mineral in the phyllosilicate serpentine subgroup with the ideal chemical formula of (Mg,Fe2+)3Si2O5(OH)4. It is the high-pressure polymorph of serpentine and is commonly found in metamorphosed serpentinites. Antigorite, and its serpentine polymorphs, play an important role in subduction zone dynamics due to their relative weakness and high weight percent of water (up to 13 weight % H2O). It is named after its type locality, the Geisspfad serpentinite, Valle Antigorio in the border region of Italy/Switzerland and is commonly used as a gemstone in jewelry and carvings.

Cobalt compounds are chemical compounds formed by cobalt with other elements.

References

  1. Harlov, D. E.; Budzyn, B. (December 2008). "The stability of Cl-CO3-scapolite relative to plagioclase + CaCO3 + CaSO4 in the presence of NaCl brines as a function of P-T-XNaCl". AGUFM. 2008: V31C–2156–2156. Bibcode:2008AGUFM.V31C2156H.
  2. 1 2 Dinnebier, Robert E.; Jansen, Martin (2008-12-01). "The Crystal Structure of [Mg2(H2O)6(HCO3)3]+Cl–, Containing a Magnesium-based Hetero-polycation". Zeitschrift für Naturforschung B. 63 (12): 1347–1351. doi: 10.1515/znb-2008-1201 . ISSN   1865-7117. S2CID   196866126.
  3. 1 2 3 4 Hazen, Robert M.; Hummer, Daniel R.; Hystad, Grethe; Downs, Robert T.; Golden, Joshua J. (April 2016). "Carbon mineral ecology: Predicting the undiscovered minerals of carbon". American Mineralogist. 101 (4): 889–906. Bibcode:2016AmMin.101..889H. doi:10.2138/am-2016-5546. ISSN   0003-004X. S2CID   741788.
  4. Pekov, Igor V.; Zubkova, Natalia V.; Yapaskurt, Vasiliy O.; Lykova, Inna S.; Chukanov, Nikita V.; Belakovskiy, Dmitry I.; Britvin, Sergey N.; Turchkova, Anna G.; Pushcharovsky, Dmitry Y. (2019-02-21). "Alexkhomyakovite, K6(Ca2Na)(CO3)5Cl∙6H2O, a new mineral from the Khibiny alkaline complex, Kola peninsula, Russia". European Journal of Mineralogy. 31 (1): 135–143. Bibcode:2019EJMin..31..135P. doi:10.1127/ejm/2018/0030-2798. ISSN   0935-1221. S2CID   134451790.
  5. Chukanov, Nikita V.; Zubkova, Natalia V.; Pekov, Igor V.; Olysych, Lyudmila V.; Bonaccorsi, Elena; Pushcharovsky, Dmitry YU. (2010-03-18). "Balliranoite, (Na,K)6Ca2(Si6Al6O24)Cl2(CO3), a new cancrinite-group mineral from Monte Somma Vesuvio volcanic complex, Italy". European Journal of Mineralogy. 22 (1): 113–119. Bibcode:2010EJMin..22..113C. doi:10.1127/0935-1221/2010/0022-1983. ISSN   0935-1221.
  6. Kashayev, A. A.; Feoktistov, G. D.; Petrova, S. V. (July 1983). "Chlormagaluminite (Mg, Fe 2+ ) 4 Al 2 (OH) 12 (Cl, 1/2 CO 3 ) 2 ·2H 2 O-a new mineral of the manasseite-sjogrenite group". International Geology Review. 25 (7): 848–853. Bibcode:1983IGRv...25..848K. doi:10.1080/00206818309466774. ISSN   0020-6814.
  7. BALLIRANO, PAOLO (1998). "CARBONATEGROUPSIN DAWNE:STRUCTURAL AND CRYSTAL.CHEMICAL CONSIDERATIONs" (PDF). The Canadian Mineralogist. 36: 1285–1292.
  8. 1 2 Frost, Ray L.; Palmer, Sara J. (2011-11-15). "Raman spectrum of decrespignyite [(Y,REE)4Cu(CO3)4Cl(OH)5·2H2O] and its relation with those of other halogenated carbonates including bastnasite, hydroxybastnasite, parisite and northupite". Journal of Raman Spectroscopy. 42 (11): 2042–2048. Bibcode:2011JRSp...42.2042F. doi:10.1002/jrs.2959.
  9. Wallwork, K.; Kolitsch, U.; Pring, A.; Nasdala, L. (February 2002). "Decrespignyite-(Y), a new copper yttrium rare earth carbonate chloride hydrate from Paratoo, South Australia". Mineralogical Magazine. 66 (1): 181–188. Bibcode:2002MinM...66..181W. doi:10.1180/0026461026610021. ISSN   0026-461X. S2CID   4820053.
  10. Frost, R. L.; Erickson, K. L. (2004). "Thermal decomposition of natural iowaite" (PDF). Journal of Thermal Analysis and Calorimetry. 78 (2): 367–373. doi:10.1023/B:JTAN.0000046103.00586.61. ISSN   1388-6150. S2CID   97065830.
  11. "Kampfite: Mineral information, data and localities". www.mindat.org. Retrieved 2019-11-26.
  12. 1 2 Harlov, Daniel E.; Aranovich, Leonid (2018-01-30). The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle. Springer. ISBN   978-3-319-61667-4.
  13. 1 2 Ivan Kostov, Ruslan I. Kostov (2016). "Systematics and crystal genesis of carbonate minerals" (PDF). ANNUAL OF THE UNIVERSITY OF MINING AND GEOLOGY "ST. IVAN RILSKI", Part I, Geology and Geophysics. 49: 111–118.
  14. Batsanov, Stepan S.; Ruchkin, Evgeny D.; Poroshina, Inga A. (2016-08-10). Refractive Indices of Solids. Springer. p. 61. ISBN   978-981-10-0797-2.
  15. Antao, S. M.; Hassan, I. (2011-04-01). "COMPLETE Al-Si ORDER IN SCAPOLITE Me37.5, IDEALLY Ca3Na5[Al8Si16O48]Cl(CO3), AND IMPLICATIONS FOR ANTIPHASE DOMAIN BOUNDARIES (APBs)". The Canadian Mineralogist. 49 (2): 581–586. Bibcode:2011CaMin..49..581A. doi:10.3749/canmin.49.2.581. ISSN   0008-4476.
  16. "Tatarskite: Mineral information, data and localities". www.mindat.org. Retrieved 10 May 2020.
  17. Sokolova, Elena; Hawthorne, Frank C. (2003). "The Crystal Structure Of An Anthropogenic Cu–k–na–hydro-Hydroxyl–carbonate–chloride From Johanngeorgenstadt, Saxony, Germany". The Canadian Mineralogist. 41 (4): 929–936. Bibcode:2003CaMin..41..929S. doi:10.2113/gscanmin.41.4.929.
  18. Zhang, Yiting; Long, Ying; Dong, Xuehua; Wang, Lei; Huang, Ling; Zeng, Hongmei; Lin, Zhien; Wang, Xin; Zou, Guohong (2019). "Y 8 O(OH) 15 (CO 3 ) 3 Cl: an excellent short-wave UV nonlinear optical material exhibiting an infrequent three-dimensional inorganic cationic framework". Chemical Communications. 55 (31): 4538–4541. doi:10.1039/C9CC00581A. ISSN   1359-7345. PMID   30924839. S2CID   85566544.
  19. Cao, Liling; Song, Yunxia; Peng, Guang; Luo, Min; Yang, Yi; Lin, Chen-sheng; Zhao, Dan; Xu, Feng; Lin, Zheshuai; Ye, Ning (2019-03-26). "Refractive Index Modulates Second-Harmonic Responses in RE 8 O(CO 3 ) 3 (OH) 15 X (RE = Y, Lu; X = Cl, Br): Rare-Earth Halide Carbonates as Ultraviolet Nonlinear Optical Materials". Chemistry of Materials. 31 (6): 2130–2137. doi:10.1021/acs.chemmater.9b00068. ISSN   0897-4756. S2CID   107652980.
  20. 1 2 3 Wang, Yanyan; Han, Tian; Ding, You-Song; Zheng, Zhiping; Zheng, Yan-Zhen (2016). "Sodalite-like rare-earth carbonates: a study of structural transformation and diluted magnetism". Dalton Transactions. 45 (3): 1103–1110. doi: 10.1039/C5DT03314D . ISSN   1477-9226. PMID   26660232.
  21. 1 2 Yang, Jian-Hui; Cheng, Ru-Mei; Jia, Yan-Yan; Jin, Jin; Yang, Bing-Bing; Cao, Zhi; Liu, Bin (2016). "Chlorine and temperature directed self-assembly of Mg–Ru 2 ( ii , iii ) carbonates and particle size dependent magnetic properties". Dalton Transactions. 45 (7): 2945–2954. doi:10.1039/C5DT04463D. ISSN   1477-9226. PMID   26750871.
  22. Fu, Zhendong (2012). Spin Correlations and Excitations in Spin-frustrated Molecular and Molecule-based Magnets. Forschungszentrum Jülich. pp. 97–165. ISBN   978-3-89336-797-9.
  23. Nawa, Kazuhiro; Okuyama, Daisuke; Avdeev, Maxim; Nojiri, Hiroyuki; Yoshida, Masahiro; Ueta, Daichi; Yoshizawa, Hideki; Sato, Taku J. (2018-10-18). "Degenerate ground state in the classical pyrochlore antiferromagnet Na 3 Mn ( CO 3 ) 2 Cl". Physical Review B. 98 (14): 144426. arXiv: 1810.05126 . Bibcode:2018PhRvB..98n4426N. doi:10.1103/PhysRevB.98.144426. ISSN   2469-9950. S2CID   119245230.
  24. Schmitz, Dieter (2001). "Synthese, Charakterisierung und Bildungsprinzipien von sauren und neutralen Oxoselenaten(IV) und Oxoselenat(IV)-hydraten" (in German): 182 via Fachbereich 8.{{cite journal}}: Cite journal requires |journal= (help)
  25. "LiBa9[Si10O25]Cl7(CO3) (LiBa9Si10[CO3]Cl7O25) Crystal Structure - SpringerMaterials". materials.springer.com. Retrieved 2019-11-27.
  26. Il'Inets, A. M.; Nevskii, N. N.; Ilyukhin, V. V.; Belov, N. V. (March 1983). "A new type of infinite silicate radical [Si10O25] in the synthetic compound LiBa9[Si10O25]CI7(CO3)". SPHD. 28: 213. Bibcode:1983SPhD...28..213I.
  27. Leyva-Bailen, Patricia; Vaqueiro, Paz; Powell, Anthony V. (September 2009). "Ionothermal synthesis of the mixed-anion material, Ba3Cl4CO3". Journal of Solid State Chemistry. 182 (9): 2333–2337. Bibcode:2009JSSCh.182.2333L. doi:10.1016/j.jssc.2009.06.019.
  28. Chesman, Anthony S. R.; Turner, David R.; Langley, Stuart K.; Moubaraki, Boujemaa; Murray, Keith S.; Deacon, Glen B.; Batten, Stuart R. (2015-02-02). "Synthesis and Structure of New Lanthanoid Carbonate "Lanthaballs"". Inorganic Chemistry. 54 (3): 792–800. doi:10.1021/ic5016115. ISSN   0020-1669. PMID   25349948.
  29. Li, Xiao-Yu; Su, Hai-Feng; Li, Quan-Wen; Feng, Rui; Bai, Hui-Yun; Chen, Hua-Yu; Xu, Jian; Bu, Xian-He (22 July 2019). "A Giant Dy76 Cluster: A Fused Bi-Nanopillar Structural Model for Lanthanide Clusters". Angewandte Chemie International Edition. 58 (30): 10184–10188. doi:10.1002/anie.201903817. PMID   31090998. S2CID   155089115.
  30. Shatnawi, Razan Ahmad Mahmoud (November 2013). Synthesis and Characterization of Some Amino Acid Complexes with Metal Ions. Yarmouk University (Article).
  31. Davidson, G.; Ebsworth, E. A. V. (2007). Spectroscopic Properties of Inorganic and Organometallic Compounds. Royal Society of Chemistry. p. 294. ISBN   978-1-84755-506-9.