Tungsten(III) chloride

Last updated
Tungsten(III) chloride
JAFYAQ.png
Identifiers
3D model (JSmol)
PubChem CID
  • InChI=1S/3ClH.W/h3*1H;/q;;;+3/p-3
    Key: KBSJJSOGQSGFRD-UHFFFAOYSA-K
  • Cl[W](Cl)Cl
Properties
Cl18W6
Molar mass 1741.14 g·mol−1
Appearanceyellow brown solid
Density 5.44 g·cm−3
Melting point 550 [1]  °C (1,022 °F; 823 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Tungsten(III) chloride is the inorganic compound with the formula W6Cl18. It is a cluster compound. It is a brown solid, obtainable by chlorination of tungsten(II) chloride. [2] Featuring twelve doubly bridging chloride ligands, the cluster adopts a structure related to the corresponding chlorides of niobium and tantalum. In contrast, W6Cl12 features eight triply bridging chlorides.

A related mixed valence W(III)-W(IV) chloride is prepared by reduction of the hexachloride with bismuth: [3]

9 WCl6 + 8 Bi → 3 W3Cl10 + 8 BiCl3

Related Research Articles

<span class="mw-page-title-main">Iron(II) chloride</span> Chemical compound

Iron(II) chloride, also known as ferrous chloride, is the chemical compound of formula FeCl2. It is a paramagnetic solid with a high melting point. The compound is white, but typical samples are often off-white. FeCl2 crystallizes from water as the greenish tetrahydrate, which is the form that is most commonly encountered in commerce and the laboratory. There is also a dihydrate. The compound is highly soluble in water, giving pale green solutions.

<span class="mw-page-title-main">Rhodium(III) chloride</span> Chemical compound

Rhodium(III) chloride refers to inorganic compounds with the formula RhCl3(H2O)n, where n varies from 0 to 3. These are diamagnetic solids featuring octahedral Rh(III) centres. Depending on the value of n, the material is either a dense brown solid or a soluble reddish salt. The soluble trihydrated (n = 3) salt is widely used to prepare compounds used in homogeneous catalysis, notably for the industrial production of acetic acid and hydroformylation.

Octahedral clusters are inorganic or organometallic cluster compounds composed of six metals in an octahedral array. Many types of compounds are known, but all are synthetic.

<span class="mw-page-title-main">Tantalum(V) chloride</span> Chemical compound

Tantalum(V) chloride, also known as tantalum pentachloride, is an inorganic compound with the formula TaCl5. It takes the form of a white powder and is commonly used as a starting material in tantalum chemistry. It readily hydrolyzes to form tantalum(V) oxychloride (TaOCl3) and eventually tantalum pentoxide (Ta2O5); this requires that it be synthesised and manipulated under anhydrous conditions, using air-free techniques.

<span class="mw-page-title-main">Molybdenum(V) chloride</span> Chemical compound

Molybdenum(V) chloride is the inorganic compound with the empirical formula MoCl5. This dark volatile solid is used in research to prepare other molybdenum compounds. It is moisture-sensitive and soluble in chlorinated solvents.

<span class="mw-page-title-main">Tungsten hexachloride</span> Chemical compound

Tungsten hexachloride is an inorganic chemical compound of tungsten and chlorine with the chemical formula WCl6. This dark violet blue compound exists as volatile crystals under standard conditions. It is an important starting reagent in the preparation of tungsten compounds. Other examples of charge-neutral hexachlorides are rhenium(VI) chloride and molybdenum(VI) chloride. The highly volatile tungsten hexafluoride is also known.

<span class="mw-page-title-main">Tungsten(V) chloride</span> Chemical compound

Tungsten(V) chloride is an inorganic compound with the formula W2Cl10. This compound is analogous in many ways to the more familiar molybdenum pentachloride.

<span class="mw-page-title-main">Molybdenum(II) chloride</span> Chemical compound

Molybdenum dichloride describes chemical compounds with the empirical formula MoCl2. At least two forms are known, and both have attracted much attention from academic researchers because of the unexpected structures seen for these compounds and the fact that they give rise to hundreds of derivatives. The form discussed here is Mo6Cl12. The other molybdenum(II) chloride is potassium octachlorodimolybdate.

There are three sets of Indium halides, the trihalides, the monohalides, and several intermediate halides. In the monohalides the oxidation state of indium is +1 and their proper names are indium(I) fluoride, indium(I) chloride, indium(I) bromide and indium(I) iodide.

<span class="mw-page-title-main">Molybdenum tetrachloride</span> Chemical compound

Molybdenum tetrachloride is the inorganic compound with the empirical formula MoCl4. The material exists as two polymorphs, both being dark-colored paramagnetic solids. These compounds are mainly of interest as precursors to other molybdenum complexes.

<span class="mw-page-title-main">Molybdenum(III) chloride</span> Chemical compound

Molybdenum(III) chloride is the inorganic compound with the formula MoCl3. It forms purple crystals.

<span class="mw-page-title-main">Potassium octachlorodirhenate</span> Chemical compound

Potassium octachlorodirhenate(III) is an inorganic compound with the formula K2Re2Cl8. This dark blue salt is well known as an early example of a compound featuring quadruple bond between its metal centers. Although the compound has no practical value, its characterization was significant in opening a new field of research into complexes with quadruple bonds.

Tungsten(IV) chloride is an inorganic compound with the formula WCl4. It is a diamagnetic black solid. The compound is of interest in research as one of a handful of binary tungsten chlorides.

<span class="mw-page-title-main">Tungsten(II) chloride</span> Chemical compound

Tungsten(II) chloride is the inorganic compound with the formula W6Cl12. It is a polymeric cluster compound. The material dissolves in concentrated hydrochloric acid, forming (H3O)2[W6Cl14](H2O)x. Heating this salt gives yellow-brown W6Cl12. The structural chemistry resembles that observed for molybdenum(II) chloride.

<span class="mw-page-title-main">Tantalum(III) chloride</span> Chemical compound

Tantalum(III) chloride or tantalum trichloride is non-stoichiometric chemical compound with a range of composition from TaCl2.9 to TaCl3.1 Anionic and neutral clusters containing Ta(III) chloride include [Ta6Cl18]4− and [Ta6Cl14](H2O)4.

<span class="mw-page-title-main">Metal cluster compound</span> Cluster of three or more metals

Metal cluster compounds are a molecular ion or neutral compound composed of three or more metals and featuring significant metal-metal interactions.

<span class="mw-page-title-main">Metal–metal bond</span>

In inorganic chemistry, metal–metal bonds describe attractive interactions between metal centers. The simplest examples are found in bimetallic complexes. Metal–metal bonds can be "supported", i.e. be accompanied by one or more bridging ligands, or "unsupported". They can also vary according to bond order. The topic of metal–metal bonding is usually discussed within the framework of coordination chemistry, but the topic is related to extended metallic bonding, which describes interactions between metals in extended solids such as bulk metals and metal subhalides.

<span class="mw-page-title-main">Transition metal chloride complex</span> Coordination complex

In chemistry, a transition metal chloride complex is a coordination complex that consists of a transition metal coordinated to one or more chloride ligand. The class of complexes is extensive.

Carbide chlorides are mixed anion compounds containing chloride anions and anions consisting entirely of carbon. In these compounds there is no bond between chlorine and carbon. But there is a bond between a metal and carbon. Many of these compounds are cluster compounds, in which metal atoms encase a carbon core, with chlorine atoms surrounding the cluster. The chlorine may be shared between clusters to form polymers or layers. Most carbide chloride compounds contain rare earth elements. Some are known from group 4 elements. The hexatungsten carbon cluster can be oxidised and reduced, and so have different numbers of chlorine atoms included.

<span class="mw-page-title-main">Transition metal ether complex</span>

In chemistry, a transition metal ether complex is a coordination complex consisting of a transition metal bonded to one or more ether ligand. The inventory of complexes is extensive. Common ether ligands are diethyl ether and tetrahydrofuran. Common chelating ether ligands include the glymes, dimethoxyethane (dme) and diglyme, and the crown ethers. Being lipophilic, metal-ether complexes often exhibit solubility in organic solvents, a property of interest in synthetic chemistry. In contrast, the di-ether 1,4-dioxane is generally a bridging ligand.

References

  1. Eliseev, S. S.; Synthesis and physicochemical properties of tungsten trichloride. Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy 1983, V19(7), P1182-5 CAPLUS
  2. Yue-Qing Zheng; Ekaterina Jonas; Jürgen Nuss; Hans Georg von Schnering (1999). "The DMSO Solvated octahedro-[W6iCl12aCl6 Cluster Molecule". Z. Anorg. Allg. Chem. 624: 1400–1404. doi:10.1002/(SICI)1521-3749(199809)624:9<1400::AID-ZAAC1400>3.0.CO;2-0.
  3. Thurston, J. H.; Kolesnichenko, V.; Messerle, L. (2014). "Trinuclear Tungsten Halide Clusters". Inorganic Syntheses: Volume 36. Vol. 36. pp. 24–30. doi:10.1002/9781118744994.ch5. ISBN   978-1-118-74499-4.{{cite book}}: |journal= ignored (help)