Names | |
---|---|
Other names
| |
Identifiers | |
3D model (JSmol) | |
ChemSpider | |
PubChem CID | |
| |
| |
Properties | |
MnCl3 | |
Molar mass | 161.30 g/mol |
Melting point | −18 °C (0 °F; 255 K) |
Related compounds | |
Related compounds | Manganese(II) chloride, Manganese(III) fluoride, Bis(triphenylphosphineoxide) manganese(III) chloride, Manganese(III) acetate, Manganese(III) acetylacetonate |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Manganese(III) chloride is the hypothetical inorganic compound with the formula MnCl3.
The existence of this binary halide has not been demonstrated. [1] [2] Nonetheless, many derivatives of MnCl3 are known, such as MnCl3(THF)3 and the bench-stable MnCl3(OPPh3)2. Contrasting with the elusive nature of MnCl3, trichlorides of the adjacent metals on the periodic table—iron(III) chloride, chromium(III) chloride, and technetium(III) chloride—are all isolable compounds.
MnCl3 was claimed to be a dark solid and produced by the reaction of "anhydrous manganese(III) acetate" and liquid hydrogen chloride at −100 °C and decomposes above -40 °C. [3] Other claims involved reaction of manganese(III) oxide, manganese(III) oxide-hydroxide, and basic manganese acetate with hydrochloric acid. Given recent investigations however, such claims have been disproved or called into serious doubt. [4] Specifically, all known compounds containing MnCl3 are known to be solvent or ligand-stabilized adducts.
MnCl3 can be stabilized by complexation to diverse Lewis bases, as has been established over the course of many years of study. [4] Meta stable acetonitrile-solvated Mn(III)Cl3 can be prepared at room temperature by treating [Mn12O12(OAc)16(H2O)4] with trimethylsilyl chloride. [5] The treatment of permanganate salts with trimethylsilylchloride generates solutions containing Mn(III)–Cl species for alkene dichlorination reactions; [6] [7] [8] electrocatalytic methods that use Mn(III)–Cl intermediates have been developed for the same purpose. [9] [10]
The reaction of manganese dioxide with hydrochloric acid in tetrahydrofuran gives MnCl3(H2O)(THF)2. [4] Manganese(III) fluoride suspended in THF reacts with boron trichloride, giving MnCl3(THF)3 which has the appearance of dark purple prisms. [4] This compound has a monoclinic crystal structure, reacts with water, and decomposes at room temperature. [4]
The most readily handled of this series of adducts is MnCl3(OPPh3)2. [11]
Another common manganese(III) chloride compound is the pentachloromanganate(III) dianion. It is usually charge balanced with counterion(s) like tetraethylammonium. [12] The pentachloromanganates are typically green in color, light sensitive, maintain pentacoordination in solution, and have S = 2 ground states at room temperature. [12] [13] Crystal structures of pentachloromanganate indicate the anion is square pyramidal. [14] [15] Tetraethylammonium pentachloromanganate(III), [Et4N]2[MnCl5], can be prepared and isolated by treating suspension of [Mn12O12(OAc)16(H2O)4] in diethyl ether with trimethylsilylchloride, collecting the resulting purple solid in the dark, and then treating this solid with 0.6 M solution of tetraethylammonium chloride. [5] The green product is air stable but should be kept in the dark.
Some manganese compounds with macrocyclic tetradentate coordination can stabilize the manganese(III) monochloride, Mn(III)–Cl, moiety. Jacobson's catalyst is an example of a coordination compound containing the Mn(III)–Cl moiety and is stabilized by N,N,O,O coordination from a salen ligand. Jacobson's catalyst and related Mn(III)–Cl complexes react with O-atom transfer reagents to form high-valent Mn(V)O that are reactive in alkene epoxidation. Tetraphenylporphyrin Mn(III)Cl is a related commercially available compound.
Iron(III) chloride describes the inorganic compounds with the formula FeCl3(H2O)x. Also called ferric chloride, these compounds are some of the most important and commonplace compounds of iron. They are available both in anhydrous and in hydrated forms, which are both hygroscopic. They feature iron in its +3 oxidation state. The anhydrous derivative is a Lewis acid, while all forms are mild oxidizing agents. It is used as a water cleaner and as an etchant for metals.
In chemistry, halogenation is a chemical reaction which introduces one or more halogens into a chemical compound. Halide-containing compounds are pervasive, making this type of transformation important, e.g. in the production of polymers, drugs. This kind of conversion is in fact so common that a comprehensive overview is challenging. This article mainly deals with halogenation using elemental halogens. Halides are also commonly introduced using salts of the halides and halogen acids. Many specialized reagents exist for and introducing halogens into diverse substrates, e.g. thionyl chloride.
Cerium(III) chloride (CeCl3), also known as cerous chloride or cerium trichloride, is a compound of cerium and chlorine. It is a white hygroscopic salt; it rapidly absorbs water on exposure to moist air to form a hydrate, which appears to be of variable composition, though the heptahydrate CeCl3·7H2O is known. It is highly soluble in water, and (when anhydrous) it is soluble in ethanol and acetone.
Manganese(II) chloride is the dichloride salt of manganese, MnCl2. This inorganic chemical exists in the anhydrous form, as well as the dihydrate (MnCl2·2H2O) and tetrahydrate (MnCl2·4H2O), with the tetrahydrate being the most common form. Like many Mn(II) species, these salts are pink, with the paleness of the color being characteristic of transition metal complexes with high spin d5 configurations.
Chromium(III) chloride (also called chromic chloride) is an inorganic chemical compound with the chemical formula CrCl3. It forms several hydrates with the formula CrCl3·nH2O, among which are hydrates where n can be 5 (chromium(III) chloride pentahydrate CrCl3·5H2O) or 6 (chromium(III) chloride hexahydrate CrCl3·6H2O). The anhydrous compound with the formula CrCl3 are violet crystals, while the most common form of the chromium(III) chloride are the dark green crystals of hexahydrate, CrCl3·6H2O. Chromium chlorides find use as catalysts and as precursors to dyes for wool.
Wilkinson's catalyst (chloridotris(triphenylphosphine)rhodium(I)) is a coordination complex of rhodium with the formula [RhCl(PPh3)], where 'Ph' denotes a phenyl group. It is a red-brown colored solid that is soluble in hydrocarbon solvents such as benzene, and more so in tetrahydrofuran or chlorinated solvents such as dichloromethane. The compound is widely used as a catalyst for hydrogenation of alkenes. It is named after chemist and Nobel laureate Sir Geoffrey Wilkinson, who first popularized its use.
Manganese(III) fluoride (also known as Manganese trifluoride) is the inorganic compound with the formula MnF3. This red/purplish solid is useful for converting hydrocarbons into fluorocarbons, i.e., it is a fluorination agent. It forms a hydrate and many derivatives.
Rhodium(III) chloride refers to inorganic compounds with the formula RhCl3(H2O)n, where n varies from 0 to 3. These are diamagnetic red-brown solids. The soluble trihydrated (n = 3) salt is the usual compound of commerce. It is widely used to prepare compounds used in homogeneous catalysis.
Gold(III) chloride, traditionally called auric chloride, is an inorganic compound of gold and chlorine with the molecular formula Au2Cl6. The "III" in the name indicates that the gold has an oxidation state of +3, typical for many gold compounds. It has two forms, the monohydrate (AuCl3·H2O) and the anhydrous form, which are both hygroscopic and light-sensitive solids. This compound is a dimer of AuCl3. This compound has a few uses, such as an oxidizing agent and for catalyzing various organic reactions.
Ruthenium(III) chloride is the chemical compound with the formula RuCl3. "Ruthenium(III) chloride" more commonly refers to the hydrate RuCl3·xH2O. Both the anhydrous and hydrated species are dark brown or black solids. The hydrate, with a varying proportion of water of crystallization, often approximating to a trihydrate, is a commonly used starting material in ruthenium chemistry.
The McMurry reaction is an organic reaction in which two ketone or aldehyde groups are coupled to form an alkene using a titanium chloride compound such as titanium(III) chloride and a reducing agent. The reaction is named after its co-discoverer, John E. McMurry. The McMurry reaction originally involved the use of a mixture TiCl3 and LiAlH4, which produces the active reagents. Related species have been developed involving the combination of TiCl3 or TiCl4 with various other reducing agents, including potassium, zinc, and magnesium. This reaction is related to the Pinacol coupling reaction which also proceeds by reductive coupling of carbonyl compounds.
Trimethylsilyl chloride, also known as chlorotrimethylsilane is an organosilicon compound, with the formula (CH3)3SiCl, often abbreviated Me3SiCl or TMSCl. It is a colourless volatile liquid that is stable in the absence of water. It is widely used in organic chemistry.
Titanium(III) chloride is the inorganic compound with the formula TiCl3. At least four distinct species have this formula; additionally hydrated derivatives are known. TiCl3 is one of the most common halides of titanium and is an important catalyst for the manufacture of polyolefins.
Vanadium(III) chloride describes the inorganic compound with the formula VCl3 and its hydrates. It forms a purple anhydrous form and a green hexahydrate [VCl2(H2O)4]Cl·2H2O. These hygroscopic salts are common precursors to other vanadium(III) complexes and is used as a mild reducing agent.
Arsenic trichloride is an inorganic compound with the formula AsCl3, also known as arsenous chloride or butter of arsenic. This poisonous oil is colourless, although impure samples may appear yellow. It is an intermediate in the manufacture of organoarsenic compounds.
Bismuth chloride (or butter of bismuth) is an inorganic compound with the chemical formula BiCl3. It is a covalent compound and is the common source of the Bi3+ ion. In the gas phase and in the crystal, the species adopts a pyramidal structure, in accord with VSEPR theory.
Organoscandium chemistry is an area with organometallic compounds focused on compounds with at least one carbon to scandium chemical bond. The interest in organoscandium compounds is mostly academic but motivated by potential practical applications in catalysis, especially in polymerization. A common precursor is scandium chloride, especially its THF complex.
Tetraethylammonium trichloride (also known as Mioskowski reagent) is a chemical compound with the formula [NEt4][Cl3] consisting of a tetraethylammonium cation and a trichloride as anion. The trichloride is also known as trichlorine monoanion representing one of the simplest polychlorine anions. Tetraethylammonium trichloride is used as reagent for chlorinations and oxidation reactions.
In chemistry, a transition metal ether complex is a coordination complex consisting of a transition metal bonded to one or more ether ligand. The inventory of complexes is extensive. Common ether ligands are diethyl ether and tetrahydrofuran. Common chelating ether ligands include the glymes, dimethoxyethane (dme) and diglyme, and the crown ethers. Being lipophilic, metal-ether complexes often exhibit solubility in organic solvents, a property of interest in synthetic chemistry. In contrast, the di-ether 1,4-dioxane is generally a bridging ligand.
Bis(triphenylphosphineoxide) manganese(III) chloride is a coordination complex of manganese(III) chloride. Unlike most compounds containing "Mn(III)Cl3", [MnCl3(OPPh3)2] can be stored under normal laboratory conditions. It is a blue, paramagnetic solid.