Rutherfordium | |||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pronunciation | /ˌrʌðərˈfɔːrdiəm/ ( ![]() | ||||||||||||||||||||||||||||||||||||||||||
Mass number | [267] | ||||||||||||||||||||||||||||||||||||||||||
Rutherfordium in the periodic table | |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
Atomic number (Z) | 104 | ||||||||||||||||||||||||||||||||||||||||||
Group | group 4 | ||||||||||||||||||||||||||||||||||||||||||
Period | period 7 | ||||||||||||||||||||||||||||||||||||||||||
Block | d-block | ||||||||||||||||||||||||||||||||||||||||||
Electron configuration | [ Rn ] 5f14 6d2 7s2 [1] [2] | ||||||||||||||||||||||||||||||||||||||||||
Electrons per shell | 2, 8, 18, 32, 32, 10, 2 | ||||||||||||||||||||||||||||||||||||||||||
Physical properties | |||||||||||||||||||||||||||||||||||||||||||
Phase at STP | solid (predicted) [1] [2] | ||||||||||||||||||||||||||||||||||||||||||
Melting point | 2400 K (2100 °C,3800 °F)(predicted) [1] [2] | ||||||||||||||||||||||||||||||||||||||||||
Boiling point | 5800 K(5500 °C,9900 °F)(predicted) [1] [2] | ||||||||||||||||||||||||||||||||||||||||||
Density (near r.t.) | 17 g/cm3(predicted) [3] [4] | ||||||||||||||||||||||||||||||||||||||||||
Atomic properties | |||||||||||||||||||||||||||||||||||||||||||
Oxidation states | (+2), (+3), +4 [1] [2] [5] (parenthesized: prediction) | ||||||||||||||||||||||||||||||||||||||||||
Ionization energies | |||||||||||||||||||||||||||||||||||||||||||
Atomic radius | empirical:150 pm (estimated) [2] | ||||||||||||||||||||||||||||||||||||||||||
Covalent radius | 157 pm(estimated) [1] | ||||||||||||||||||||||||||||||||||||||||||
Other properties | |||||||||||||||||||||||||||||||||||||||||||
Natural occurrence | synthetic | ||||||||||||||||||||||||||||||||||||||||||
Crystal structure | hexagonal close-packed (hcp) (predicted) [6] | ||||||||||||||||||||||||||||||||||||||||||
CAS Number | 53850-36-5 | ||||||||||||||||||||||||||||||||||||||||||
History | |||||||||||||||||||||||||||||||||||||||||||
Naming | after Ernest Rutherford | ||||||||||||||||||||||||||||||||||||||||||
Discovery | Joint Institute for Nuclear Research and Lawrence Berkeley National Laboratory (1964, 1969) | ||||||||||||||||||||||||||||||||||||||||||
Main isotopes of rutherfordium | |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
Rutherfordium is a chemical element with the symbol Rf and atomic number 104, named after New Zealand-born British physicist Ernest Rutherford. As a synthetic element, it is not found in nature and can only be made in a particle accelerator. It is radioactive; the most stable known isotope, 267Rf, has a half-life of about 48 minutes.
In the periodic table, it is a d-block element and the second of the fourth-row transition elements. It is in period 7 and is a group 4 element. Chemistry experiments have confirmed that rutherfordium behaves as the heavier homolog to hafnium in group 4. The chemical properties of rutherfordium are characterized only partly. They compare well with the other group 4 elements, even though some calculations had indicated that the element might show significantly different properties due to relativistic effects.
In the 1960s, small amounts of rutherfordium were produced at Joint Institute for Nuclear Research in the Soviet Union and at Lawrence Berkeley National Laboratory in California. [10] Priority of discovery and hence the name of the element was disputed between Soviet and American scientists, and it was not until 1997 that the International Union of Pure and Applied Chemistry (IUPAC) established rutherfordium as the official name of the element.
External video | |
---|---|
![]() |
The heaviest [lower-alpha 1] atomic nuclei are created in nuclear reactions that combine two other nuclei of unequal size [lower-alpha 2] into one; roughly, the more unequal the two nuclei in terms of mass, the greater the possibility that the two react. [17] The material made of the heavier nuclei is made into a target, which is then bombarded by the beam of lighter nuclei. Two nuclei can only fuse into one if they approach each other closely enough; normally, nuclei (all positively charged) repel each other due to electrostatic repulsion. The strong interaction can overcome this repulsion but only within a very short distance from a nucleus; beam nuclei are thus greatly accelerated in order to make such repulsion insignificant compared to the velocity of the beam nucleus. [18] Coming close alone is not enough for two nuclei to fuse: when two nuclei approach each other, they usually remain together for approximately 10−20 seconds and then part ways (not necessarily in the same composition as before the reaction) rather than form a single nucleus. [18] [19] If fusion does occur, the temporary merger—termed a compound nucleus—is an excited state. To lose its excitation energy and reach a more stable state, a compound nucleus either fissions or ejects one or several neutrons, [lower-alpha 3] which carry away the energy. This occurs in approximately 10−16 seconds after the initial collision. [20] [lower-alpha 4]
The beam passes through the target and reaches the next chamber, the separator; if a new nucleus is produced, it is carried with this beam. [23] In the separator, the newly produced nucleus is separated from other nuclides (that of the original beam and any other reaction products) [lower-alpha 5] and transferred to a surface-barrier detector, which stops the nucleus. The exact location of the upcoming impact on the detector is marked; also marked are its energy and the time of the arrival. [23] The transfer takes about 10−6 seconds; in order to be detected, the nucleus must survive this long. [26] The nucleus is recorded again once its decay is registered, and the location, the energy, and the time of the decay are measured. [23]
Stability of a nucleus is provided by the strong interaction. However, its range is very short; as nuclei become larger, their influence on the outermost nucleons (protons and neutrons) weakens. At the same time, the nucleus is torn apart by electrostatic repulsion between protons, as it has unlimited range. [27] Nuclei of the heaviest elements are thus theoretically predicted [28] and have so far been observed [29] to primarily decay via decay modes that are caused by such repulsion: alpha decay and spontaneous fission; [lower-alpha 6] these modes are predominant for nuclei of superheavy elements. Alpha decays are registered by the emitted alpha particles, and the decay products are easy to determine before the actual decay; if such a decay or a series of consecutive decays produces a known nucleus, the original product of a reaction can be determined arithmetically. [lower-alpha 7] Spontaneous fission, however, produces various nuclei as products, so the original nuclide cannot be determined from its daughters. [lower-alpha 8]
The information available to physicists aiming to synthesize one of the heaviest elements is thus the information collected at the detectors: location, energy, and time of arrival of a particle to the detector, and those of its decay. The physicists analyze this data and seek to conclude that it was indeed caused by a new element and could not have been caused by a different nuclide than the one claimed. Often, provided data is insufficient for a conclusion that a new element was definitely created and there is no other explanation for the observed effects; errors in interpreting data have been made. [lower-alpha 9]
Rutherfordium was reportedly first detected in 1964 at the Joint Institute for Nuclear Research at Dubna (Soviet Union at the time). Researchers there bombarded a plutonium-242 target with neon-22 ions and separated the reaction products by gradient thermochromatography after conversion to chlorides by interaction with ZrCl4. The team identified spontaneous fission activity contained within a volatile chloride portraying eka-hafnium properties. Though a half-life was not accurately determined, later calculations indicated that the product was most likely rutherfordium-259 (259Rf in standard notation): [41]
In 1969, researchers at University of California, Berkeley conclusively synthesized the element by bombarding a californium-249 target with carbon-12 ions and measured the alpha decay of 257Rf, correlated with the daughter decay of nobelium-253: [42]
The American synthesis was independently confirmed in 1973 and secured the identification of rutherfordium as the parent by the observation of K-alpha X-rays in the elemental signature of the 257Rf decay product, nobelium-253. [43]
As a consequence of the initial competing claims of discovery, an element naming controversy arose. Since the Soviets claimed to have first detected the new element they suggested the name kurchatovium (Ku) in honor of Igor Kurchatov (1903–1960), former head of Soviet nuclear research. This name had been used in books of the Soviet Bloc as the official name of the element. The Americans, however, proposed rutherfordium (Rf) for the new element to honor Ernest Rutherford, who is known as the "father" of nuclear physics. [44] In 1992, the IUPAC/IUPAP Transfermium Working Group (TWG) assessed the claims of discovery and concluded that both teams provided contemporaneous evidence to the synthesis of element 104 and that credit should be shared between the two groups. [41]
The American group wrote a scathing response to the findings of the TWG, stating that they had given too much emphasis on the results from the Dubna group. In particular they pointed out that the Russian group had altered the details of their claims several times over a period of 20 years, a fact that the Russian team does not deny. They also stressed that the TWG had given too much credence to the chemistry experiments performed by the Russians and accused the TWG of not having appropriately qualified personnel on the committee. The TWG responded by saying that this was not the case and having assessed each point raised by the American group said that they found no reason to alter their conclusion regarding priority of discovery. [45] The IUPAC finally used the name suggested by the American team (rutherfordium). [46]
The International Union of Pure and Applied Chemistry (IUPAC) adopted unnilquadium (Unq) as a temporary, systematic element name, derived from the Latin names for digits 1, 0, and 4. In 1994, IUPAC suggested a set of names for elements 104 through 109, in which dubnium (Db) became element 104 and rutherfordium became element 106. [47] This recommendation was criticized by the American scientists for several reasons. Firstly, their suggestions were scrambled: the names rutherfordium and hahnium, originally suggested by Berkeley for elements 104 and 105, were respectively reassigned to elements 106 and 108. Secondly, elements 104 and 105 were given names favored by JINR, despite earlier recognition of LBL as an equal co-discoverer for both of them. Thirdly and most importantly, IUPAC rejected the name seaborgium for element 106, having just approved a rule that an element could not be named after a living person, even though the IUPAC had given the LBNL team the sole credit for its discovery. [48] In 1997, IUPAC renamed elements 104 to 109, and gave element 104 the current name rutherfordium. The name dubnium was given to element 105 at the same time. [46]
Isotope | Half-life [7] | Decay mode [7] | Discovery year | Reaction |
---|---|---|---|---|
253Rf | 48 μs | α, SF | 1994 | 204Pb(50Ti,n) [49] |
254Rf | 23 μs | SF | 1994 | 206Pb(50Ti,2n) [49] |
255Rf | 2.3 s | ε?, α, SF | 1974 | 207Pb(50Ti,2n) [50] |
256Rf | 6.4 ms | α, SF | 1974 | 208Pb(50Ti,2n) [50] |
257Rf | 4.7 s | ε, α, SF | 1969 | 249Cf(12C,4n) [42] |
257mRf | 4.1 s | ε, α, SF | 1969 | 249Cf(12C,4n) [42] |
258Rf | 14.7 ms | α, SF | 1969 | 249Cf(13C,4n) [42] |
259Rf | 3.2 s | α, SF | 1969 | 249Cf(13C,3n) [42] |
259mRf | 2.5 s | ε | 1969 | 249Cf(13C,3n) [42] |
260Rf | 21 ms | α, SF | 1969 | 248Cm(16O,4n) [41] |
261Rf | 78 s | α, SF | 1970 | 248Cm(18O,5n) [51] |
261mRf | 4 s | ε, α, SF | 2001 | 244Pu(22Ne,5n) [52] |
262Rf | 2.3 s | α, SF | 1996 | 244Pu(22Ne,4n) [53] |
263Rf | 15 min | α, SF | 1999 | 263Db( e− , ν e ) [54] |
263mRf ? | 8 s | α, SF | 1999 | 263Db( e− , ν e ) [54] |
265Rf | 1.1 min [8] | SF | 2010 | 269Sg(—,α) [55] |
266Rf | 23 s? | SF | 2007? | 266Db( e− , ν e )? [56] [57] |
267Rf | 48 min [9] | SF | 2004 | 271Sg(—,α) [58] |
268Rf | 1.4 s? | SF | 2004? | 268Db( e− , ν e )? [57] [59] |
270Rf | 20 ms? [60] | SF | 2010? | 270Db( e− , ν e )? [61] |
Rutherfordium has no stable or naturally occurring isotopes. Several radioactive isotopes have been synthesized in the laboratory, either by fusing two atoms or by observing the decay of heavier elements. Sixteen different isotopes have been reported with atomic masses from 253 to 270 (with the exceptions of 264 and 269). Most of these decay predominantly through spontaneous fission pathways. [7] [62]
Out of isotopes whose half-lives are known, the lighter isotopes usually have shorter half-lives; half-lives of under 50 μs for 253Rf and 254Rf were observed. 256Rf, 258Rf, 260Rf are more stable at around 10 ms, 255Rf, 257Rf, 259Rf, and 262Rf live between 1 and 5 seconds, and 261Rf, 265Rf, and 263Rf are more stable, at around 1.1, 1.5, and 10 minutes respectively. The heaviest isotopes are the most stable, with 267Rf having a measured half-life of about 48 minutes. [9]
The lightest isotopes were synthesized by direct fusion between two lighter nuclei and as decay products. The heaviest isotope produced by direct fusion is 262Rf; heavier isotopes have only been observed as decay products of elements with larger atomic numbers. The heavy isotopes 266Rf and 268Rf have also been reported as electron capture daughters of the dubnium isotopes 266Db and 268Db, but have short half-lives to spontaneous fission. It seems likely that the same is true for 270Rf, a possible daughter of 270Db. [61] These three isotopes remain unconfirmed.
In 1999, American scientists at the University of California, Berkeley, announced that they had succeeded in synthesizing three atoms of 293Og. [63] These parent nuclei were reported to have successively emitted seven alpha particles to form 265Rf nuclei, but their claim was retracted in 2001. [64] This isotope was later discovered in 2010 as the final product in the decay chain of 285Fl. [8] [55]
Very few properties of rutherfordium or its compounds have been measured; this is due to its extremely limited and expensive production [17] and the fact that rutherfordium (and its parents) decays very quickly. A few singular chemistry-related properties have been measured, but properties of rutherfordium metal remain unknown and only predictions are available.
Rutherfordium is the first transactinide element and the second member of the 6d series of transition metals. Calculations on its ionization potentials, atomic radius, as well as radii, orbital energies, and ground levels of its ionized states are similar to that of hafnium and very different from that of lead. Therefore, it was concluded that rutherfordium's basic properties will resemble those of other group 4 elements, below titanium, zirconium, and hafnium. [54] [65] Some of its properties were determined by gas-phase experiments and aqueous chemistry. The oxidation state +4 is the only stable state for the latter two elements and therefore rutherfordium should also exhibit a stable +4 state. [65] In addition, rutherfordium is also expected to be able to form a less stable +3 state. [2] The standard reduction potential of the Rf4+/Rf couple is predicted to be higher than −1.7 V. [5]
Initial predictions of the chemical properties of rutherfordium were based on calculations which indicated that the relativistic effects on the electron shell might be strong enough that the 7p orbitals would have a lower energy level than the 6d orbitals, giving it a valence electron configuration of 6d1 7s2 7p1 or even 7s2 7p2, therefore making the element behave more like lead than hafnium. With better calculation methods and experimental studies of the chemical properties of rutherfordium compounds it could be shown that this does not happen and that rutherfordium instead behaves like the rest of the group 4 elements. [2] [65] Later it was shown in ab initio calculations with the high level of accuracy [66] [67] [68] that the Rf atom has the ground state with the 6d2 7s2 valence configuration and the low-lying excited 6d1 7s2 7p1 state with the excitation energy of only 0.3–0.5 eV.
In an analogous manner to zirconium and hafnium, rutherfordium is projected to form a very stable, refractory oxide, RfO2. It reacts with halogens to form tetrahalides, RfX4, which hydrolyze on contact with water to form oxyhalides RfOX2. The tetrahalides are volatile solids existing as monomeric tetrahedral molecules in the vapor phase. [65]
In the aqueous phase, the Rf4+ ion hydrolyzes less than titanium(IV) and to a similar extent as zirconium and hafnium, thus resulting in the RfO2+ ion. Treatment of the halides with halide ions promotes the formation of complex ions. The use of chloride and bromide ions produces the hexahalide complexes RfCl2−
6 and RfBr2−
6. For the fluoride complexes, zirconium and hafnium tend to form hepta- and octa- complexes. Thus, for the larger rutherfordium ion, the complexes RfF2−
6, RfF3−
7 and RfF4−
8 are possible. [65]
Rutherfordium is expected to be a solid under normal conditions and have a hexagonal close-packed crystal structure (c/a = 1.61), similar to its lighter congener hafnium. [6] It should be a metal with density ~17 g/cm3. [3] [4] The atomic radius of rutherfordium is expected to be ~150 pm. Due to relativistic stabilization of the 7s orbital and destabilization of the 6d orbital, Rf+ and Rf2+ ions are predicted to give up 6d electrons instead of 7s electrons, which is the opposite of the behavior of its lighter homologs. [2] When under high pressure (variously calculated as 72 or ~50 GPa), rutherfordium is expected to transition to body-centered cubic crystal structure; hafnium transforms to this structure at 71±1 GPa, but has an intermediate ω structure that it transforms to at 38±8 GPa that should be lacking for rutherfordium. [69]
Early work on the study of the chemistry of rutherfordium focused on gas thermochromatography and measurement of relative deposition temperature adsorption curves. The initial work was carried out at Dubna in an attempt to reaffirm their discovery of the element. Recent work is more reliable regarding the identification of the parent rutherfordium radioisotopes. The isotope 261mRf has been used for these studies, [65] though the long-lived isotope 267Rf (produced in the decay chain of 291Lv, 287Fl, and 283Cn) may be advantageous for future experiments. [70] The experiments relied on the expectation that rutherfordium would begin the new 6d series of elements and should therefore form a volatile tetrachloride due to the tetrahedral nature of the molecule. [65] [71] [72] Rutherfordium(IV) chloride is more volatile than its lighter homologue hafnium(IV) chloride (HfCl4) because its bonds are more covalent. [2]
A series of experiments confirmed that rutherfordium behaves as a typical member of group 4, forming a tetravalent chloride (RfCl4) and bromide (RfBr4) as well as an oxychloride (RfOCl2). A decreased volatility was observed for RfCl
4 when potassium chloride is provided as the solid phase instead of gas, highly indicative of the formation of nonvolatile K
2RfCl
6 mixed salt. [54] [65] [73]
Rutherfordium is expected to have the electron configuration [Rn]5f14 6d2 7s2 and therefore behave as the heavier homologue of hafnium in group 4 of the periodic table. It should therefore readily form a hydrated Rf4+ ion in strong acid solution and should readily form complexes in hydrochloric acid, hydrobromic or hydrofluoric acid solutions. [65]
The most conclusive aqueous chemistry studies of rutherfordium have been performed by the Japanese team at Japan Atomic Energy Research Institute using the isotope 261mRf. Extraction experiments from hydrochloric acid solutions using isotopes of rutherfordium, hafnium, zirconium, as well as the pseudo-group 4 element thorium have proved a non-actinide behavior for rutherfordium. A comparison with its lighter homologues placed rutherfordium firmly in group 4 and indicated the formation of a hexachlororutherfordate complex in chloride solutions, in a manner similar to hafnium and zirconium. [65] [74]
Very similar results were observed in hydrofluoric acid solutions. Differences in the extraction curves were interpreted as a weaker affinity for fluoride ion and the formation of the hexafluororutherfordate ion, whereas hafnium and zirconium ions complex seven or eight fluoride ions at the concentrations used: [65]
Experiments performed in mixed sulfuric and nitric acid solutions shows that rutherfordium has a much weaker affinity towards forming sulfate complexes than hafnium. This result is in agreement with predictions, which expect rutherfordium complexes to be less stable than those of zirconium and hafnium because of a smaller ionic contribution to the bonding. This arises because rutherfordium has a larger ionic radius (76 pm) than zirconium (71 pm) and hafnium (72 pm), and also because of relativistic stabilisation of the 7s orbital and destabilisation and spin–orbit splitting of the 6d orbitals. [75]
Coprecipitation experiments performed in 2021 studied rutherfordium's behaviour in basic solution containing ammonia or sodium hydroxide, using zirconium, hafnium, and thorium as comparisons. It was found that rutherfordium does not strongly coordinate with ammonia and instead coprecipitates out as a hydroxide, which is probably Rf(OH)4. [76]
Bohrium is a synthetic chemical element with the symbol Bh and atomic number 107. It is named after Danish physicist Niels Bohr. As a synthetic element, it can be created in a laboratory but is not found in nature. All known isotopes of bohrium are highly radioactive; the most stable known isotope is 270Bh with a half-life of approximately 2.4 minutes, though the unconfirmed 278Bh may have a longer half-life of about 11.5 minutes.
Dubnium is a synthetic chemical element with the symbol Db and atomic number 105. It is highly radioactive: the most stable known isotope, dubnium-268, has a half-life of about 16 hours. This greatly limits extended research on the element.
Hassium is a chemical element with the symbol Hs and the atomic number 108. Hassium is highly radioactive; its most stable known isotopes have half-lives of approximately ten seconds. One of its isotopes, 270Hs, has magic numbers of both protons and neutrons for deformed nuclei, which gives it greater stability against spontaneous fission. Hassium is a superheavy element; it has been produced in a laboratory only in very small quantities by fusing heavy nuclei with lighter ones. Natural occurrences of the element have been hypothesised but never found.
Lawrencium is a synthetic chemical element with the symbol Lr and atomic number 103. It is named in honor of Ernest Lawrence, inventor of the cyclotron, a device that was used to discover many artificial radioactive elements. A radioactive metal, lawrencium is the eleventh transuranic element and the last member of the actinide series. Like all elements with atomic number over 100, lawrencium can only be produced in particle accelerators by bombarding lighter elements with charged particles. Fourteen isotopes of lawrencium are currently known; the most stable is 266Lr with half-life 11 hours, but the shorter-lived 260Lr is most commonly used in chemistry because it can be produced on a larger scale.
Meitnerium is a synthetic chemical element with the symbol Mt and atomic number 109. It is an extremely radioactive synthetic element. The most stable known isotope, meitnerium-278, has a half-life of 4.5 seconds, although the unconfirmed meitnerium-282 may have a longer half-life of 67 seconds. The GSI Helmholtz Centre for Heavy Ion Research near Darmstadt, Germany, first created this element in 1982. It is named after Lise Meitner.
Seaborgium is a synthetic chemical element with the symbol Sg and atomic number 106. It is named after the American nuclear chemist Glenn T. Seaborg. As a synthetic element, it can be created in a laboratory but is not found in nature. It is also radioactive; the most stable known isotope, 269Sg, has a half-life of approximately 14 minutes.
Darmstadtium is a chemical element with the symbol Ds and atomic number 110. It is an extremely radioactive synthetic element. The most stable known isotope, darmstadtium-281, has a half-life of approximately 12.7 seconds. Darmstadtium was first created in 1994 by the GSI Helmholtz Centre for Heavy Ion Research in the city of Darmstadt, Germany, after which it was named.
Roentgenium is a chemical element with the symbol Rg and atomic number 111. It is an extremely radioactive synthetic element that can be created in a laboratory but is not found in nature. The most stable known isotope, roentgenium-282, has a half-life of 100 seconds, although the unconfirmed roentgenium-286 may have a longer half-life of about 10.7 minutes. Roentgenium was first created in 1994 by the GSI Helmholtz Centre for Heavy Ion Research near Darmstadt, Germany. It is named after the physicist Wilhelm Röntgen, who discovered X-rays. Only a few roentgenium atoms have ever been synthesized, and they have no current practical application beyond that of scientific study.
Livermorium is a synthetic chemical element with the symbol Lv and has an atomic number of 116. It is an extremely radioactive element that has only been created in a laboratory setting and has not been observed in nature. The element is named after the Lawrence Livermore National Laboratory in the United States, which collaborated with the Joint Institute for Nuclear Research (JINR) in Dubna, Russia to discover livermorium during experiments conducted between 2000 and 2006. The name of the laboratory refers to the city of Livermore, California, where it is located, which in turn was named after the rancher and landowner Robert Livermore. The name was adopted by IUPAC on May 30, 2012. Four isotopes of livermorium are known, with mass numbers between 290 and 293 inclusive; the longest-lived among them is livermorium-293 with a half-life of about 60 milliseconds. A fifth possible isotope with mass number 294 has been reported but not yet confirmed.
Oganesson is a synthetic chemical element with the symbol Og and atomic number 118. It was first synthesized in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, near Moscow, Russia, by a joint team of Russian and American scientists. In December 2015, it was recognized as one of four new elements by the Joint Working Party of the international scientific bodies IUPAC and IUPAP. It was formally named on 28 November 2016. The name honors the nuclear physicist Yuri Oganessian, who played a leading role in the discovery of the heaviest elements in the periodic table. It is one of only two elements named after a person who was alive at the time of naming, the other being seaborgium, and the only element whose eponym is alive today.
Moscovium is a synthetic element with the symbol Mc and atomic number 115. It was first synthesized in 2003 by a joint team of Russian and American scientists at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. In December 2015, it was recognized as one of four new elements by the Joint Working Party of international scientific bodies IUPAC and IUPAP. On 28 November 2016, it was officially named after the Moscow Oblast, in which the JINR is situated.
Copernicium is a synthetic chemical element with the symbol Cn and atomic number 112. Its known isotopes are extremely radioactive, and have only been created in a laboratory. The most stable known isotope, copernicium-285, has a half-life of approximately 30 seconds. Copernicium was first created in 1996 by the GSI Helmholtz Centre for Heavy Ion Research near Darmstadt, Germany. It was named after the astronomer Nicolaus Copernicus.
Flerovium is a superheavy chemical element with symbol Fl and atomic number 114. It is an extremely radioactive synthetic element. It is named after the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research in Dubna, Russia, where the element was discovered in 1999. The lab's name, in turn, honours Russian physicist Georgy Flyorov. IUPAC adopted the name on 30 May 2012. The name and symbol had previously been proposed for element 102 (nobelium), but was not accepted by IUPAC at that time.
Unbibium, also known as element 122 or eka-thorium, is the hypothetical chemical element in the periodic table with the placeholder symbol of Ubb and atomic number 122. Unbibium and Ubb are the temporary systematic IUPAC name and symbol respectively, which are used until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table of the elements, it is expected to follow unbiunium as the second element of the superactinides and the fourth element of the 8th period. Similarly to unbiunium, it is expected to fall within the range of the island of stability, potentially conferring additional stability on some isotopes, especially 306Ubb which is expected to have a magic number of neutrons (184).
Superheavy elements, also known as transactinide elements, transactinides, or super-heavy elements, are the chemical elements with atomic number greater than 103. The superheavy elements are those beyond the actinides in the periodic table; the last actinide is lawrencium. By definition, superheavy elements are also transuranium elements, i.e., having atomic numbers greater than that of uranium (92). Depending on the definition of group 3 adopted by authors, lawrencium may also be included to complete the 6d series.
Rutherfordium (104Rf) is a synthetic element and thus has no stable isotopes. A standard atomic weight cannot be given. The first isotope to be synthesized was either 259Rf in 1966 or 257Rf in 1969. There are 16 known radioisotopes from 253Rf to 270Rf and 4 isomers. The longest-lived isotope is 267Rf with a half-life of 48 minutes, and the longest-lived isomer is 261mRf with a half-life of 81 seconds.
Hassium (108Hs) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 265Hs in 1984. There are 13 known isotopes from 263Hs to 277Hs and 1–4 isomers. The most stable isotope of hassium cannot be determined based on existing data due to uncertainty that arises from the low number of measurements. The confidence interval of half-life of 269Hs corresponding to one standard deviation is 16±6 seconds, whereas that of 270Hs is 9±4 seconds. It is also possible that 277mHs is more stable than both of these, with its half-life likely being 130±100 seconds, but only one event of decay of this isotope has been registered as of 2016.
Flerovium (114Fl) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 289Fl in 1999. Flerovium has seven known isotopes, and possibly 2 nuclear isomers. The longest-lived isotope is 289Fl with a half-life of 1.9 seconds, but the unconfirmed 290Fl may have a longer half-life of 19 seconds.
Unbiquadium, also known as element 124 or eka-uranium, is the hypothetical chemical element with atomic number 124 and placeholder symbol Ubq. Unbiquadium and Ubq are the temporary IUPAC name and symbol, respectively, until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table, unbiquadium is expected to be a g-block superactinide and the sixth element in the 8th period. Unbiquadium has attracted attention, as it may lie within the island of stability, leading to longer half-lives, especially for 308Ubq which is predicted to have a magic number of neutrons (184).
The heaviest atomic nuclei are created in nuclear reactions that combine two other nuclei of unequal size into one; roughly, the more unequal the two nuclei in terms of mass, the greater the possibility that the two react. The material made of the heavier nuclei is made into a target, which is then bombarded by the beam of lighter nuclei. Two nuclei can only fuse into one if they approach each other closely enough; normally, nuclei repel each other due to electrostatic repulsion. The strong interaction can overcome this repulsion but only within a very short distance from a nucleus; beam nuclei are thus greatly accelerated in order to make such repulsion insignificant compared to the velocity of the beam nucleus. Coming close alone is not enough for two nuclei to fuse: when two nuclei approach each other, they usually remain together for approximately 10−20 seconds and then part ways rather than form a single nucleus. If fusion does occur, the temporary merger—termed a compound nucleus—is an excited state. To lose its excitation energy and reach a more stable state, a compound nucleus either fissions or ejects one or several neutrons, which carry away the energy. This occurs in approximately 10−16 seconds after the initial collision.
{{cite journal}}
: Cite journal requires |journal=
(help)