The atomic radius of a chemical element is a measure of the size of its atom, usually the mean or typical distance from the center of the nucleus to the outermost isolated electron. Since the boundary is not a well-defined physical entity, there are various non-equivalent definitions of atomic radius. Four widely used definitions of atomic radius are: Van der Waals radius, ionic radius, metallic radius and covalent radius. Typically, because of the difficulty to isolate atoms in order to measure their radii separately, atomic radius is measured in a chemically bonded state; however theoretical calculations are simpler when considering atoms in isolation. The dependencies on environment, probe, and state lead to a multiplicity of definitions.
Depending on the definition, the term may apply to atoms in condensed matter, covalently bonding in molecules, or in ionized and excited states; and its value may be obtained through experimental measurements, or computed from theoretical models. The value of the radius may depend on the atom's state and context. [1]
Electrons do not have definite orbits nor sharply defined ranges. Rather, their positions must be described as probability distributions that taper off gradually as one moves away from the nucleus, without a sharp cutoff; these are referred to as atomic orbitals or electron clouds. Moreover, in condensed matter and molecules, the electron clouds of the atoms usually overlap to some extent, and some of the electrons may roam over a large region encompassing two or more atoms.
Under most definitions the radii of isolated neutral atoms range between 30 and 300 pm (trillionths of a meter), or between 0.3 and 3 ångströms. Therefore, the radius of an atom is more than 10,000 times the radius of its nucleus (1–10 fm), [2] and less than 1/1000 of the wavelength of visible light (400–700 nm).
For many purposes, atoms can be modeled as spheres. This is only a crude approximation, but it can provide quantitative explanations and predictions for many phenomena, such as the density of liquids and solids, the diffusion of fluids through molecular sieves, the arrangement of atoms and ions in crystals, and the size and shape of molecules.[ citation needed ]
The concept of atomic radius was preceded in the 19th century by the concept of atomic volume, a relative measure of how much space would on average an atom occupy in a given solid or liquid material. [3] By the end of the century this term was also used in an absolute sense, as a molar volume divided by Avogadro constant. [4] Such a volume is different for different crystalline forms even of the same compound, [5] but physicists used it for rough, order-of-magnitude estimates of the atomic size, getting 10-8–10-7 cm for copper. [6]
The earliest estimates of the atomic size was made by opticians in the 1830s, particularly Cauchy, [7] [8] who developed models of light dispersion assuming a lattice of connected "molecules". [9] In 1857 Clausius developed a gas-kinetic model which included the equation for mean free path. In the 1870s it was used to estimate gas molecule sizes, as well as an aforementioned comparison with visible light wavelength and an estimate from the thickness of soap bubble film at which its contractile force rapidly diminishes. [10] By 1900, various estimates of mercury atom diameter averaged around 275±20 pm [7] (modern estimates give 300±10 pm, see below).
In 1920, shortly after it had become possible to determine the sizes of atoms using X-ray crystallography, it was suggested that all atoms of the same element have the same radii. [11] However, in 1923, when more crystal data had become available, it was found that the approximation of an atom as a sphere does not necessarily hold when comparing the same atom in different crystal structures. [12]
Widely used definitions of atomic radius include:
The following table shows empirically measured covalent radii for the elements, as published by J. C. Slater in 1964. [17] The values are in picometers (pm or 1×10−12 m), with an accuracy of about 5 pm. The shade of the box ranges from red to yellow as the radius increases; gray indicates lack of data.
Group (column) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |||
Period (row) | |||||||||||||||||||||
1 | H 25 | He | |||||||||||||||||||
2 | Li 145 | Be 105 | B 85 | C 70 | N 65 | O 60 | F 50 | Ne | |||||||||||||
3 | Na 180 | Mg 150 | Al 125 | Si 110 | P 100 | S 100 | Cl 100 | Ar | |||||||||||||
4 | K 220 | Ca 180 | Sc 160 | Ti 140 | V 135 | Cr 140 | Mn 140 | Fe 140 | Co 135 | Ni 135 | Cu 135 | Zn 135 | Ga 130 | Ge 125 | As 115 | Se 115 | Br 115 | Kr | |||
5 | Rb 235 | Sr 200 | Y 180 | Zr 155 | Nb 145 | Mo 145 | Tc 135 | Ru 130 | Rh 135 | Pd 140 | Ag 160 | Cd 155 | In 155 | Sn 145 | Sb 145 | Te 140 | I 140 | Xe | |||
6 | Cs 260 | Ba 215 | * | Lu 175 | Hf 155 | Ta 145 | W 135 | Re 135 | Os 130 | Ir 135 | Pt 135 | Au 135 | Hg 150 | Tl 190 | Pb 180 | Bi 160 | Po 190 | At | Rn | ||
7 | Fr | Ra 215 | ** | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og | ||
* | La 195 | Ce 185 | Pr 185 | Nd 185 | Pm 185 | Sm 185 | Eu 185 | Gd 180 | Tb 175 | Dy 175 | Ho 175 | Er 175 | Tm 175 | Yb 175 | |||||||
** | Ac 195 | Th 180 | Pa 180 | U 175 | Np 175 | Pu 175 | Am 175 | Cm | Bk | Cf | Es | Fm | Md | No | |||||||
Electrons in atoms fill electron shells from the lowest available energy level. As a consequence of the Aufbau principle, each new period begins with the first two elements filling the next unoccupied s-orbital. Because an atom's s-orbital electrons are typically farthest from the nucleus, this results in a significant increase in atomic radius with the first elements of each period.
The atomic radius of each element generally decreases across each period due to an increasing number of protons, since an increase in the number of protons increases the attractive force acting on the atom's electrons. The greater attraction draws the electrons closer to the protons, decreasing the size of the atom. Down each group, the atomic radius of each element typically increases because there are more occupied electron energy levels and therefore a greater distance between protons and electrons.
The increasing nuclear charge is partly counterbalanced by the increasing number of electrons—a phenomenon that is known as shielding—which explains why the size of atoms usually increases down each column despite an increase in attractive force from the nucleus. Electron shielding causes the attraction of an atom's nucleus on its electrons to decrease, so electrons occupying higher energy states farther from the nucleus experience reduced attractive force, increasing the size of the atom. However, elements in the 5d-block (lutetium to mercury) are much smaller than this trend predicts due to the weak shielding of the 4f-subshell. This phenomenon is known as the lanthanide contraction. A similar phenomenon exists for actinides; however, the general instability of transuranic elements makes measurements for the remainder of the 5f-block difficult and for transactinides nearly impossible. Finally, for sufficiently heavy elements, the atomic radius may be decreased by relativistic effects. [18] This is a consequence of electrons near the strongly charged nucleus traveling at a sufficient fraction of the speed of light to gain a nontrivial amount of mass.
The following table summarizes the main phenomena that influence the atomic radius of an element:
Factor | Principle | increase in... | tend to | effect on radius |
---|---|---|---|---|
electron shells | quantum mechanics | principal and azimuthal quantum numbers | increase down each column | increases the atomic radius |
nuclear charge | attractive force acting on electrons by protons in nucleus | atomic number | increase along each period (left to right) | decreases the atomic radius |
shielding | repulsive force acting on outermost shell electrons by inner electrons | number of electrons in inner shells | reduce the effect of nuclear charge | increases the atomic radius |
The electrons in the 4f-subshell, which is progressively filled from lanthanum ( Z = 57) to ytterbium (Z = 70), are not particularly effective at shielding the increasing nuclear charge from the sub-shells further out. The elements immediately following the lanthanides have atomic radii which are smaller than would be expected and which are almost identical to the atomic radii of the elements immediately above them. [19] Hence lutetium is in fact slightly smaller than yttrium, hafnium has virtually the same atomic radius (and chemistry) as zirconium, and tantalum has an atomic radius similar to niobium, and so forth. The effect of the lanthanide contraction is noticeable up to platinum (Z = 78), after which it is masked by a relativistic effect known as the inert-pair effect.[ citation needed ]
Due to lanthanide contraction, the 5 following observations can be drawn:
The d-block contraction is less pronounced than the lanthanide contraction but arises from a similar cause. In this case, it is the poor shielding capacity of the 3d-electrons which affects the atomic radii and chemistries of the elements immediately following the first row of the transition metals, from gallium (Z = 31) to bromine (Z = 35). [19]
The following table shows atomic radii computed from theoretical models, as published by Enrico Clementi and others in 1967. [20] The values are in picometres (pm).
Group (column) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | ||
Period (row) | ||||||||||||||||||||
1 | H 53 | He 31 | ||||||||||||||||||
2 | Li 167 | Be 112 | B 87 | C 67 | N 56 | O 48 | F 42 | Ne 38 | ||||||||||||
3 | Na 190 | Mg 145 | Al 118 | Si 111 | P 98 | S 88 | Cl 79 | Ar 71 | ||||||||||||
4 | K 243 | Ca 194 | Sc 184 | Ti 176 | V 171 | Cr 166 | Mn 161 | Fe 156 | Co 152 | Ni 149 | Cu 145 | Zn 142 | Ga 136 | Ge 125 | As 114 | Se 103 | Br 94 | Kr 88 | ||
5 | Rb 265 | Sr 219 | Y 212 | Zr 206 | Nb 198 | Mo 190 | Tc 183 | Ru 178 | Rh 173 | Pd 169 | Ag 165 | Cd 161 | In 156 | Sn 145 | Sb 133 | Te 123 | I 115 | Xe 108 | ||
6 | Cs 298 | Ba 253 | * | Lu 217 | Hf 208 | Ta 200 | W 193 | Re 188 | Os 185 | Ir 180 | Pt 177 | Au 174 | Hg 171 | Tl 156 | Pb 154 | Bi 143 | Po 135 | At 127 | Rn 120 | |
7 | Fr | Ra | ** | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og | |
* | La 226 | Ce 210 | Pr 247 | Nd 206 | Pm 205 | Sm 238 | Eu 231 | Gd 233 | Tb 225 | Dy 228 | Ho 226 | Er 226 | Tm 222 | Yb 222 | ||||||
** | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No |
Atoms are the basic particles of the chemical elements. An atom consists of a nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished from each other by the number of protons that are in their atoms. For example, any atom that contains 11 protons is sodium, and any atom that contains 29 protons is copper. Atoms with the same number of protons but a different number of neutrons are called isotopes of the same element.
A chemical bond is the association of atoms or ions to form molecules, crystals, and other structures. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds or through the sharing of electrons as in covalent bonds, or some combination of these effects. Chemical bonds are described as having different strengths: there are "strong bonds" or "primary bonds" such as covalent, ionic and metallic bonds, and "weak bonds" or "secondary bonds" such as dipole–dipole interactions, the London dispersion force, and hydrogen bonding.
Electronegativity, symbolized as χ, is the tendency for an atom of a given chemical element to attract shared electrons when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the distance at which its valence electrons reside from the charged nucleus. The higher the associated electronegativity, the more an atom or a substituent group attracts electrons. Electronegativity serves as a simple way to quantitatively estimate the bond energy, and the sign and magnitude of a bond's chemical polarity, which characterizes a bond along the continuous scale from covalent to ionic bonding. The loosely defined term electropositivity is the opposite of electronegativity: it characterizes an element's tendency to donate valence electrons.
An intermolecular force is the force that mediates interaction between molecules, including the electromagnetic forces of attraction or repulsion which act between atoms and other types of neighbouring particles, e.g. atoms or ions. Intermolecular forces are weak relative to intramolecular forces – the forces which hold a molecule together. For example, the covalent bond, involving sharing electron pairs between atoms, is much stronger than the forces present between neighboring molecules. Both sets of forces are essential parts of force fields frequently used in molecular mechanics.
A molecule is a group of two or more atoms that are held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemistry, and biochemistry, the distinction from ions is dropped and molecule is often used when referring to polyatomic ions.
Metallic bonding is a type of chemical bonding that arises from the electrostatic attractive force between conduction electrons and positively charged metal ions. It may be described as the sharing of free electrons among a structure of positively charged ions (cations). Metallic bonding accounts for many physical properties of metals, such as strength, ductility, thermal and electrical resistivity and conductivity, opacity, and lustre.
The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows ("periods") and columns ("groups"). It is an icon of chemistry and is widely used in physics and other sciences. It is a depiction of the periodic law, which states that when the elements are arranged in order of their atomic numbers an approximate recurrence of their properties is evident. The table is divided into four roughly rectangular areas called blocks. Elements in the same group tend to show similar chemical characteristics.
The covalent radius, rcov, is a measure of the size of an atom that forms part of one covalent bond. It is usually measured either in picometres (pm) or angstroms (Å), with 1 Å = 100 pm.
In physics and chemistry, ionization energy (IE) is the minimum energy required to remove the most loosely bound electron of an isolated gaseous atom, positive ion, or molecule. The first ionization energy is quantitatively expressed as
In chemistry and physics, valence electrons are electrons in the outermost shell of an atom, and that can participate in the formation of a chemical bond if the outermost shell is not closed. In a single covalent bond, a shared pair forms with both atoms in the bond each contributing one valence electron.
The inert-pair effect is the tendency of the two electrons in the outermost atomic s-orbital to remain unshared in compounds of post-transition metals. The term inert-pair effect is often used in relation to the increasing stability of oxidation states that are two less than the group valency for the heavier elements of groups 13, 14, 15 and 16. The term "inert pair" was first proposed by Nevil Sidgwick in 1927. The name suggests that the outermost s electron pairs are more tightly bound to the nucleus in these atoms, and therefore more difficult to ionize or share.
Relativistic quantum chemistry combines relativistic mechanics with quantum chemistry to calculate elemental properties and structure, especially for the heavier elements of the periodic table. A prominent example is an explanation for the color of gold: due to relativistic effects, it is not silvery like most other metals.
The atomic radius of a chemical element is the distance from the center of the nucleus to the outermost shell of an electron. Since the boundary is not a well-defined physical entity, there are various non-equivalent definitions of atomic radius. Depending on the definition, the term may apply only to isolated atoms, or also to atoms in condensed matter, covalently bound in molecules, or in ionized and excited states; and its value may be obtained through experimental measurements, or computed from theoretical models. Under some definitions, the value of the radius may depend on the atom's state and context.
Ionic radius, rion, is the radius of a monatomic ion in an ionic crystal structure. Although neither atoms nor ions have sharp boundaries, they are treated as if they were hard spheres with radii such that the sum of ionic radii of the cation and anion gives the distance between the ions in a crystal lattice. Ionic radii are typically given in units of either picometers (pm) or angstroms (Å), with 1 Å = 100 pm. Typical values range from 31 pm (0.3 Å) to over 200 pm (2 Å).
The lanthanide contraction is the greater-than-expected decrease in atomic radii and ionic radii of the elements in the lanthanide series, from left to right. It is caused by the poor shielding effect of nuclear charge by the 4f electrons along with the expected periodic trend of increasing electronegativity and nuclear charge on moving from left to right. About 10% of the lanthanide contraction has been attributed to relativistic effects.
In molecular geometry, bond length or bond distance is defined as the average distance between nuclei of two bonded atoms in a molecule. It is a transferable property of a bond between atoms of fixed types, relatively independent of the rest of the molecule.
Core electrons are the electrons in an atom that are not valence electrons and do not participate directly in chemical bonding. The nucleus and the core electrons of an atom form the atomic core. Core electrons are tightly bound to the nucleus. Therefore, unlike valence electrons, core electrons play a secondary role in chemical bonding and reactions by screening the positive charge of the atomic nucleus from the valence electrons.
The covalent radius of fluorine is a measure of the size of a fluorine atom; it is approximated at about 60 picometres.
In chemistry, periodic trends are specific patterns present in the periodic table that illustrate different aspects of certain elements when grouped by period and/or group. They were discovered by the Russian chemist Dmitri Mendeleev in 1863. Major periodic trends include atomic radius, ionization energy, electron affinity, electronegativity, nucleophilicity, electrophilicity, valency, nuclear charge, and metallic character. Mendeleev built the foundation of the periodic table. Mendeleev organized the elements based on atomic weight, leaving empty spaces where he believed undiscovered elements would take their places. Mendeleev’s discovery of this trend allowed him to predict the existence and properties of three unknown elements, which were later discovered by other chemists and named gallium, scandium, and germanium. English physicist Henry Moseley discovered that organizing the elements by atomic number instead of atomic weight would naturally group elements with similar properties.
This glossary of chemistry terms is a list of terms and definitions relevant to chemistry, including chemical laws, diagrams and formulae, laboratory tools, glassware, and equipment. Chemistry is a physical science concerned with the composition, structure, and properties of matter, as well as the changes it undergoes during chemical reactions; it features an extensive vocabulary and a significant amount of jargon.