Cobalt | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pronunciation | /ˈkoʊbɒlt/ [1] | |||||||||||||||||||||||||||||||||||
Appearance | Hard lustrous bluish gray metal | |||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Co) | ||||||||||||||||||||||||||||||||||||
Cobalt in the periodic table | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
Atomic number (Z) | 27 | |||||||||||||||||||||||||||||||||||
Group | group 9 | |||||||||||||||||||||||||||||||||||
Period | period 4 | |||||||||||||||||||||||||||||||||||
Block | d-block | |||||||||||||||||||||||||||||||||||
Electron configuration | [ Ar ] 3d7 4s2 | |||||||||||||||||||||||||||||||||||
Electrons per shell | 2, 8, 15, 2 | |||||||||||||||||||||||||||||||||||
Physical properties | ||||||||||||||||||||||||||||||||||||
Phase at STP | solid | |||||||||||||||||||||||||||||||||||
Melting point | 1768 K (1495 °C,2723 °F) | |||||||||||||||||||||||||||||||||||
Boiling point | 3200 K(2927 °C,5301 °F) | |||||||||||||||||||||||||||||||||||
Density (at 20° C) | 8.834 g/cm3 [4] | |||||||||||||||||||||||||||||||||||
when liquid (at m.p.) | 7.75 g/cm3 | |||||||||||||||||||||||||||||||||||
Heat of fusion | 16.06 kJ/mol | |||||||||||||||||||||||||||||||||||
Heat of vaporization | 377 kJ/mol | |||||||||||||||||||||||||||||||||||
Molar heat capacity | 24.81 J/(mol·K) | |||||||||||||||||||||||||||||||||||
Vapor pressure
| ||||||||||||||||||||||||||||||||||||
Atomic properties | ||||||||||||||||||||||||||||||||||||
Oxidation states | common: +2, +3 −3, ? −1, [5] 0, ? +1, [5] +4, [5] +5 [6] | |||||||||||||||||||||||||||||||||||
Electronegativity | Pauling scale: 1.88 | |||||||||||||||||||||||||||||||||||
Ionization energies |
| |||||||||||||||||||||||||||||||||||
Atomic radius | empirical:125 pm | |||||||||||||||||||||||||||||||||||
Covalent radius | Low spin: 126±3 pm High spin: 150±7 pm | |||||||||||||||||||||||||||||||||||
Spectral lines of cobalt | ||||||||||||||||||||||||||||||||||||
Other properties | ||||||||||||||||||||||||||||||||||||
Natural occurrence | primordial | |||||||||||||||||||||||||||||||||||
Crystal structure | hexagonal close-packed (hcp)(hP2) | |||||||||||||||||||||||||||||||||||
Lattice constants | a = 250.71 pm c = 407.00 pm (at 20 °C) [4] | |||||||||||||||||||||||||||||||||||
Thermal expansion | 12.9×10−6/K (at 20 °C) [lower-alpha 1] | |||||||||||||||||||||||||||||||||||
Thermal conductivity | 100 W/(m⋅K) | |||||||||||||||||||||||||||||||||||
Electrical resistivity | 62.4 nΩ⋅m(at 20 °C) | |||||||||||||||||||||||||||||||||||
Magnetic ordering | Ferromagnetic | |||||||||||||||||||||||||||||||||||
Young's modulus | 209 GPa | |||||||||||||||||||||||||||||||||||
Shear modulus | 75 GPa | |||||||||||||||||||||||||||||||||||
Bulk modulus | 180 GPa | |||||||||||||||||||||||||||||||||||
Speed of sound thin rod | 4720 m/s(at 20 °C) | |||||||||||||||||||||||||||||||||||
Poisson ratio | 0.31 | |||||||||||||||||||||||||||||||||||
Mohs hardness | 5.0 | |||||||||||||||||||||||||||||||||||
Vickers hardness | 1043 MPa | |||||||||||||||||||||||||||||||||||
Brinell hardness | 470–3000 MPa | |||||||||||||||||||||||||||||||||||
CAS Number | 7440-48-4 | |||||||||||||||||||||||||||||||||||
History | ||||||||||||||||||||||||||||||||||||
Discovery and first isolation | Georg Brandt (1735) | |||||||||||||||||||||||||||||||||||
Isotopes of cobalt | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
Cobalt is a chemical element; it has symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, produced by reductive smelting, is a hard, lustrous, somewhat brittle, gray metal.
Cobalt-based blue pigments (cobalt blue) have been used since antiquity for jewelry and paints, and to impart a distinctive blue tint to glass. The color was long thought to be due to the metal bismuth. Miners had long used the name kobold ore (German for goblin ore) for some of the blue pigment-producing minerals. They were so named because they were poor in known metals and gave off poisonous arsenic-containing fumes when smelted. [8] In 1735, such ores were found to be reducible to a new metal (the first discovered since ancient times), which was ultimately named for the kobold.
Today, some cobalt is produced specifically from one of a number of metallic-lustered ores, such as cobaltite (CoAsS). The element is more usually produced as a by-product of copper and nickel mining. The Copperbelt in the Democratic Republic of the Congo (DRC) and Zambia yields most of the global cobalt production. World production in 2016 was 116,000 tonnes (114,000 long tons; 128,000 short tons) (according to Natural Resources Canada), and the DRC alone accounted for more than 50%. [9]
Cobalt is primarily used in lithium-ion batteries, and in the manufacture of magnetic, wear-resistant and high-strength alloys. The compounds cobalt silicate and cobalt(II) aluminate (CoAl2O4, cobalt blue) give a distinctive deep blue color to glass, ceramics, inks, paints and varnishes. Cobalt occurs naturally as only one stable isotope, cobalt-59. Cobalt-60 is a commercially important radioisotope, used as a radioactive tracer and for the production of high-energy gamma rays. Cobalt is also used in the petroleum industry as a catalyst when refining crude oil. This is to purge it of sulfur, which is very polluting when burned and causes acid rain. [10]
Cobalt is the active center of a group of coenzymes called cobalamins. Vitamin B12, the best-known example of the type, is an essential vitamin for all animals. Cobalt in inorganic form is also a micronutrient for bacteria, algae, and fungi.
The name cobalt derives from a type of ore considered a nuisance by 16th century German silver miners, which in turn may have been named from a spirit or goblin held superstitiously responsible for it; this spirit is considered equitable to the kobold (a household spirit) by some, or, categorized as a gnome (mine spirit) by others.
Cobalt is a ferromagnetic metal with a specific gravity of 8.9. The Curie temperature is 1,115 °C (2,039 °F) [11] and the magnetic moment is 1.6–1.7 Bohr magnetons per atom. [12] Cobalt has a relative permeability two-thirds that of iron. [13] Metallic cobalt occurs as two crystallographic structures: hcp and fcc. The ideal transition temperature between the hcp and fcc structures is 450 °C (842 °F), but in practice the energy difference between them is so small that random intergrowth of the two is common. [14] [15] [16]
Cobalt is a weakly reducing metal that is protected from oxidation by a passivating oxide film. It is attacked by halogens and sulfur. Heating in oxygen produces Co3O4 which loses oxygen at 900 °C (1,650 °F) to give the monoxide CoO. [17] The metal reacts with fluorine (F2) at 520 K to give CoF3; with chlorine (Cl2), bromine (Br2) and iodine (I2), producing equivalent binary halides. It does not react with hydrogen gas (H2) or nitrogen gas (N2) even when heated, but it does react with boron, carbon, phosphorus, arsenic and sulfur. [18] At ordinary temperatures, it reacts slowly with mineral acids, and very slowly with moist, but not dry, air.[ citation needed ]
Common oxidation states of cobalt include +2 and +3, although compounds with oxidation states ranging from −3 to +5 are also known. A common oxidation state for simple compounds is +2 (cobalt(II)). These salts form the pink-colored metal aquo complex [Co(H
2O)
6]2+
in water. Addition of chloride gives the intensely blue [CoCl
4]2−
. [6] In a borax bead flame test, cobalt shows deep blue in both oxidizing and reducing flames. [19]
Several oxides of cobalt are known. Green cobalt(II) oxide (CoO) has rocksalt structure. It is readily oxidized with water and oxygen to brown cobalt(III) hydroxide (Co(OH)3). At temperatures of 600–700 °C, CoO oxidizes to the blue cobalt(II,III) oxide (Co3O4), which has a spinel structure. [6] Black cobalt(III) oxide (Co2O3) is also known. [20] Cobalt oxides are antiferromagnetic at low temperature: CoO (Néel temperature 291 K) and Co3O4 (Néel temperature: 40 K), which is analogous to magnetite (Fe3O4), with a mixture of +2 and +3 oxidation states. [21]
The principal chalcogenides of cobalt are the black cobalt(II) sulfides, CoS2 (pyrite structure), Co2S3 (spinel structure), and CoS (nickel arsenide structure). [6] : 1118
Four dihalides of cobalt(II) are known: cobalt(II) fluoride (CoF2, pink), cobalt(II) chloride (CoCl2, blue), cobalt(II) bromide (CoBr2, green), cobalt(II) iodide (CoI2, blue-black). These halides exist in anhydrous and hydrated forms. Whereas the anhydrous dichloride is blue, the hydrate is red. [22]
The reduction potential for the reaction Co3+
+ e− → Co2+
is +1.92 V, beyond that for chlorine to chloride, +1.36 V. Consequently, cobalt(III) chloride would spontaneously reduce to cobalt(II) chloride and chlorine. Because the reduction potential for fluorine to fluoride is so high, +2.87 V, cobalt(III) fluoride is one of the few simple stable cobalt(III) compounds. Cobalt(III) fluoride, which is used in some fluorination reactions, reacts vigorously with water. [17]
The inventory of complexes is very large. Starting with higher oxidation states, complexes of Co(IV) and Co(V) are rare. Examples are found in caesium hexafluorocobaltate(IV) (Cs2CoF6) and potassium percobaltate (K3CoO4). [17]
Cobalt(III) forms a wide variety of coordination complexes with ammonia and amines, which are called ammine complexes. Examples include [Co(NH3)6]3+, [Co(NH3)5Cl]2+ (chloropentamminecobalt(III)), and cis- and trans-[Co(NH3)4Cl2]+. The corresponding ethylenediamine complexes are also well known. Analogues are known where the halides are replaced by nitrite, hydroxide, carbonate, etc. Alfred Werner worked extensively on these complexes in his Nobel-prize winning work. [23] The robustness of these complexes is demonstrated by the optical resolution of tris(ethylenediamine)cobalt(III) ([Co(en)
3]3+
). [24]
Cobalt(II) forms a wide variety of complexes, but mainly with weakly basic ligands. The pink-colored cation hexaaquocobalt(II) [Co(H2O)6]2+ is found in several routine cobalt salts such as the nitrate and sulfate. Upon addition of excess chloride, solutions of the hexaaquo complex converts to the deep blue CoCl2−4, which is tetrahedral.
Softer ligands like triphenylphosphine form complexes with Co(II) and Co(I), examples being bis- and tris(triphenylphosphine)cobalt(I) chloride, CoCl2(PPh3)2 and CoCl(PPh3)3. These Co(I) and Co(II) complexes represent a link to the organometallic complexes described below.
Cobaltocene is a structural analog to ferrocene, with cobalt in place of iron. Cobaltocene is much more sensitive to oxidation than ferrocene. [25] Cobalt carbonyl (Co2(CO)8) is a catalyst in carbonylation and hydrosilylation reactions. [26] Vitamin B12 (see below) is an organometallic compound found in nature and is the only vitamin that contains a metal atom. [27] An example of an alkylcobalt complex in the otherwise uncommon +4 oxidation state of cobalt is the homoleptic complex tetrakis(1-norbornyl)cobalt(IV) (Co(1-norb)4), a transition metal-alkyl complex that is notable for its resistance to β-hydrogen elimination, [28] in accord with Bredt's rule. The cobalt(III) and cobalt(V) complexes [Li(THF)
4]+
[Co(1-norb)
4]−
and [Co(1-norb)
4]+
[BF
4]−
are also known. [29]
59Co is the only stable cobalt isotope and the only isotope that exists naturally on Earth. Twenty-two radioisotopes have been characterized: the most stable, 60Co, has a half-life of 5.2714 years; 57Co has a half-life of 271.8 days; 56Co has a half-life of 77.27 days; and 58Co has a half-life of 70.86 days. All the other radioactive isotopes of cobalt have half-lives shorter than 18 hours, and in most cases shorter than 1 second. This element also has 4 meta states, all of which have half-lives shorter than 15 minutes. [30]
The isotopes of cobalt range in atomic weight from 50 u (50Co) to 73 u (73Co). The primary decay mode for isotopes with atomic mass unit values less than that of the only stable isotope, 59Co, is electron capture and the primary mode of decay in isotopes with atomic mass greater than 59 atomic mass units is beta decay. The primary decay products below 59Co are element 26 (iron) isotopes; above that the decay products are element 28 (nickel) isotopes. [30]
Many different stories about the origin of the word "cobalt" have been proposed. In one version the element cobalt was named after "kobelt", the name which 16th century German silver miners had given to a nuisance type of ore which occurred that was corrosive and issued poisonous gas. [31] [32] Although such ores had been used for blue pigmentation since antiquity, the Germans at that time did not have the technology to smelt the ore into metal (cf. § History below). [33]
The authority on such kobelt ore (Latinized as cobaltum or cadmia [34] [35] ) at the time was Georgius Agricola. [31] [33] He was also the oft-quoted authority on the mine spirits called "kobel" (Latinized as cobalus or pl. cobali) in a separate work. [36] [37] [38]
Agricola did not make an connection between the similarly named ore and spirit. However, a causal connection (ore blamed on "kobel") was made by a contemporary, [40] and a word origin connection (word "formed" from cobalus) made by a late 18th century writer. [41] Later, Grimms' dictionary (1868) noted the kobalt/kobelt ore was blamed on the mountain spirit (Bergmännchen [lower-alpha 2] ) which was also held responsible for "stealing the silver and putting out an ore that caused poor mining atmosphere (Wetter [42] ) and other health hazards". [32]
Grimms' dictionary entries equated the word "kobel" with "kobold", and listed it as a mere variant diminutive, [44] but the latter is defined in it as a household spirit. [43] Whereas some of the more recent commentators prefer to characterize the ore's namesake kobelt (recté kobel) as a gnome. [45] [48]
The early 20th century Oxford English Dictionary (1st edition, 1908) had upheld Grimm's etymology. [lower-alpha 3] [49] But by around the same time in Germany, the alternate etymology not endorsed by Grimm (kob/kof "house, chamber" + walt "power, ruler") was being proposed as more convincing. [50] [51]
Somewhat later, Paul Kretschmer (1928) explained that while this "house ruler" etymology was the proper one that backed the original meaning of kobold as household spirit, a corruption later occurred introducing the idea of "mine demon" to it. [52] The present edition of the Etymologisches Wörterbuch (25th ed., 2012) under "kobold" lists the latter, not Grimm's etymology, but still persists, under its entry for "kobalt", that while the cobalt ore may have got its name from "a type of mine spirit/demon" (daemon metallicus) while stating that this is "apparently" the kobold. [53]
Joseph William Mellor (1935) also stated that cobalt may derive from kobalos (κόβαλος), though other theories had been suggested. [54]
Several alternative etymologies that have been suggested, which may not involve a spirit (kobel or kobold) at all. Karl Müller-Fraureuth conjectured that kobelt derived from Kübel , a bucket used in mining, frequently mentioned by Agricola, [50] namely the kobel/köbel (Latinized as modulus). [55]
Another theory given by the Etymologisches Wörterbuch derives the term from kōbathium [53] or rather cobathia (κωβάθια, "arsenic sulfide" [56] ) which occurs as noxious fumes. [33]
An etymology from Slavonic kowalti was suggested by Emanuel Merck (1902). [57] [54]
W. W. Skeat and J. Berendes construed κόβαλος as "parasite", i.e. as an ore parasitic to nickel, [54] but this explanation is faulted for its anachronism since nickel was not discovered until 1751. [58] [59]
Cobalt compounds have been used for centuries to impart a rich blue color to glass, glazes, and ceramics. Cobalt has been detected in Egyptian sculpture, Persian jewelry from the third millennium BC, in the ruins of Pompeii, destroyed in 79 AD, and in China, dating from the Tang dynasty (618–907 AD) and the Ming dynasty (1368–1644 AD). [60]
Cobalt has been used to color glass since the Bronze Age. The excavation of the Uluburun shipwreck yielded an ingot of blue glass, cast during the 14th century BC. [61] [62] Blue glass from Egypt was either colored with copper, iron, or cobalt. The oldest cobalt-colored glass is from the eighteenth dynasty of Egypt (1550–1292 BC). The source for the cobalt the Egyptians used is not known. [63]
The word cobalt is derived from the 16th century German "kobelt", a type of ore, as aforementioned. The first attempts to smelt those ores for copper or silver failed, yielding simply powder (cobalt(II) oxide) instead. Because the primary ores of cobalt always contain arsenic, smelting the ore oxidized the arsenic into the highly toxic and volatile arsenic oxide, adding to the notoriety of the ore. [64] Paracelsus, Georgius Agricola, and Basil Valentine all referred to such silicates as "cobalt". [65]
Swedish chemist Georg Brandt (1694–1768) is credited with discovering cobalt c. 1735, showing it to be a previously unknown element, distinct from bismuth and other traditional metals. Brandt called it a new "semi-metal", [66] [67] naming it for the mineral from which he had extracted it. [68] : 153 He showed that compounds of cobalt metal were the source of the blue color in glass, which previously had been attributed to the bismuth found with cobalt. Cobalt became the first metal to be discovered since the pre-historical period. All previously known metals (iron, copper, silver, gold, zinc, mercury, tin, lead and bismuth) had no recorded discoverers. [69]
During the 19th century, a significant part of the world's production of cobalt blue (a pigment made with cobalt compounds and alumina) and smalt (cobalt glass powdered for use for pigment purposes in ceramics and painting) was carried out at the Norwegian Blaafarveværket. [70] [71] The first mines for the production of smalt in the 16th century were located in Norway, Sweden, Saxony and Hungary. With the discovery of cobalt ore in New Caledonia in 1864, the mining of cobalt in Europe declined. With the discovery of ore deposits in Ontario, Canada, in 1904 and the discovery of even larger deposits in the Katanga Province in the Congo in 1914, mining operations shifted again. [64] When the Shaba conflict started in 1978, the copper mines of Katanga Province nearly stopped production. [72] [73] The impact on the world cobalt economy from this conflict was smaller than expected: cobalt is a rare metal, the pigment is highly toxic, and the industry had already established effective ways for recycling cobalt materials. In some cases, industry was able to change to cobalt-free alternatives. [72] [73]
In 1938, John Livingood and Glenn T. Seaborg discovered the radioisotope cobalt-60. [74] This isotope was famously used at Columbia University in the 1950s to establish parity violation in radioactive beta decay. [75] [76]
After World War II, the US wanted to guarantee the supply of cobalt ore for military uses (as the Germans had been doing) and prospected for cobalt within the US. High purity cobalt was highly sought after for its use in jet engines and gas turbines. [77] An adequate supply of the ore was found in Idaho near Blackbird canyon. Calera Mining Company started production at the site. [78]
Cobalt demand has further accelerated in the 21st century as an essential constituent of materials used in rechargeable batteries, superalloys, and catalysts. [77] It has been argued that cobalt will be one of the main objects of geopolitical competition in a world running on renewable energy and dependent on batteries, but this perspective has also been criticised for underestimating the power of economic incentives for expanded production. [79]
The stable form of cobalt is produced in supernovae through the r-process. [80] It comprises 0.0029% of the Earth's crust. Except as recently delivered in meteoric iron, free cobalt (the native metal) is not found on Earth's surface because of its tendency to react with oxygen in the atmosphere. Small amounts of cobalt compounds are found in most rocks, soils, plants, and animals. [81] In the ocean cobalt typically reacts with chlorine.
In nature, cobalt is frequently associated with nickel. Both are characteristic components of meteoric iron, though cobalt is much less abundant in iron meteorites than nickel. As with nickel, cobalt in meteoric iron alloys may have been well enough protected from oxygen and moisture to remain as the free (but alloyed) metal. [82]
Cobalt in compound form occurs in copper and nickel minerals. It is the major metallic component that combines with sulfur and arsenic in the sulfidic cobaltite (CoAsS), safflorite (CoAs2), glaucodot ((Co,Fe)AsS), and skutterudite (CoAs3) minerals. [17] The mineral cattierite is similar to pyrite and occurs together with vaesite in the copper deposits of Katanga Province. [83] When it reaches the atmosphere, weathering occurs; the sulfide minerals oxidize and form pink erythrite ("cobalt glance": Co3(AsO4)2·8H2O) and spherocobaltite (CoCO3). [84] [85]
Cobalt is also a constituent of tobacco smoke. [86] The tobacco plant readily absorbs and accumulates heavy metals like cobalt from the surrounding soil in its leaves. These are subsequently inhaled during tobacco smoking. [87]
Country | Production | Reserves |
---|---|---|
DR Congo | 130,000 | 4,000,000 |
Indonesia | 10,000 | 600,000 |
Russia | 8,900 | 250,000 |
Australia | 5,900 | 1,500,000 |
Canada | 3,900 | 220,000 |
Cuba | 3,800 | 500,000 |
Philippines | 3,800 | 260,000 |
Madagascar | 3,000 | 100,000 |
Papua New Guinea | 3,000 | 47,000 |
Turkey | 2,700 | 36,000 |
Morocco | 2,300 | 13,000 |
China | 2,200 | 140,000 |
United States | 800 | 69,000 |
Other countries | 5,200 | 610,000 |
World total | 190,000 | 8,300,000 |
The main ores of cobalt are cobaltite, erythrite, glaucodot and skutterudite (see above), but most cobalt is obtained by reducing the cobalt by-products of nickel and copper mining and smelting. [89] [90]
Since cobalt is generally produced as a by-product, the supply of cobalt depends to a great extent on the economic feasibility of copper and nickel mining in a given market. Demand for cobalt was projected to grow 6% in 2017. [91]
Primary cobalt deposits are rare, such as those occurring in hydrothermal deposits, associated with ultramafic rocks, typified by the Bou-Azzer district of Morocco. At such locations, cobalt ores are mined exclusively, albeit at a lower concentration, and thus require more downstream processing for cobalt extraction. [92] [93]
Several methods exist to separate cobalt from copper and nickel, depending on the concentration of cobalt and the exact composition of the used ore. One method is froth flotation, in which surfactants bind to ore components, leading to an enrichment of cobalt ores. Subsequent roasting converts the ores to cobalt sulfate, and the copper and the iron are oxidized to the oxide. Leaching with water extracts the sulfate together with the arsenates. The residues are further leached with sulfuric acid, yielding a solution of copper sulfate. Cobalt can also be leached from the slag of copper smelting. [94]
The products of the above-mentioned processes are transformed into the cobalt oxide (Co3O4). This oxide is reduced to metal by the aluminothermic reaction or reduction with carbon in a blast furnace. [17]
The United States Geological Survey estimates world reserves of cobalt at 7,100,000 metric tons. [95] The Democratic Republic of the Congo (DRC) currently produces 63% of the world's cobalt. This market share may reach 73% by 2025 if planned expansions by mining producers like Glencore Plc take place as expected. Bloomberg New Energy Finance has estimated that by 2030, global demand for cobalt could be 47 times more than it was in 2017. [96]
Changes that Congo made to mining laws in 2002 attracted new investments in Congolese copper and cobalt projects. Glencore's Mutanda Mine shipped 24,500 tons of cobalt in 2016, 40% of Congo DRC's output and nearly a quarter of global production. After oversupply, Glencore closed Mutanda for two years in late 2019. [97] [98] Glencore's Katanga Mining project is resuming as well and should produce 300,000 tons of copper and 20,000 tons of cobalt by 2019, according to Glencore. [91]
In 2005, the top producer of cobalt was the copper deposits in the Democratic Republic of the Congo's Katanga Province. Formerly Shaba province, the area had almost 40% of global reserves, reported the British Geological Survey in 2009. [99]
Artisanal mining supplied 17% to 40% of the DRC production. [100] Some 100,000 cobalt miners in Congo DRC use hand tools to dig hundreds of feet, with little planning and fewer safety measures, say workers and government and NGO officials, as well as The Washington Post reporters' observations on visits to isolated mines. The lack of safety precautions frequently causes injuries or death. [101] Mining pollutes the vicinity and exposes local wildlife and indigenous communities to toxic metals thought to cause birth defects and breathing difficulties, according to health officials. [102]
Child labor is used in mining cobalt from African artisanal mines. [100] [103] Human rights activists have highlighted this and investigative journalism reporting has confirmed it. [104] [105] This revelation prompted cell phone maker Apple Inc., on March 3, 2017, to stop buying ore from suppliers such as Zhejiang Huayou Cobalt who source from artisanal mines in the DRC, and begin using only suppliers that are verified to meet its workplace standards. [106] [107]
There is a push globally by the EU and major car manufacturers (OEM) for global production of cobalt to be sourced and –produced sustainably, responsibly and traceability of the supply chain. Mining companies are adopting and practising ESG initiatives in line with OECD Guidance and putting in place evidence of zero to low carbon footprint activities in the supply chain production of lithium-ion batteries. These initiatives are already taking place with major mining companies, artisanal and small-scale mining companies (ASM). Car manufacturers and battery manufacturer supply chains: Tesla, VW, BMW, BASF and Glencore are participating in several initiatives, such as the Responsible Cobalt Initiative and Cobalt for Development study. In 2018 BMW Group in partnership with BASF, Samsung SDI and Samsung Electronics have launched a pilot project in the DRC over one pilot mine, to improve conditions and address challenges for artisanal miners and the surrounding communities.
The political and ethnic dynamics of the region have in the past caused outbreaks of violence and years of armed conflict and displaced populations. This instability affected the price of cobalt and also created perverse incentives for the combatants in the First and Second Congo Wars to prolong the fighting, since access to diamond mines and other valuable resources helped to finance their military goals—which frequently amounted to genocide—and also enriched the fighters themselves. While DR Congo has in the 2010s not recently been invaded by neighboring military forces, some of the richest mineral deposits adjoin areas where Tutsis and Hutus still frequently clash, unrest continues although on a smaller scale and refugees still flee outbreaks of violence. [108]
Cobalt extracted from small Congolese artisanal mining endeavors in 2007 supplied a single Chinese company, Congo DongFang International Mining. A subsidiary of Zhejiang Huayou Cobalt, one of the world's largest cobalt producers, Congo DongFang supplied cobalt to some of the world's largest battery manufacturers, who produced batteries for ubiquitous products like the Apple iPhones. Because of accused labour violations and environmental concerns, LG Chem subsequently audited Congo DongFang in accordance with OECD guidelines. LG Chem, which also produces battery materials for car companies, imposed a code of conduct on all suppliers that it inspects. [109]
The Mukondo Mountain project, operated by the Central African Mining and Exploration Company (CAMEC) in Katanga Province, may be the richest cobalt reserve in the world. It produced an estimated one-third of the total global cobalt production in 2008. [110] In July 2009, CAMEC announced a long-term agreement to deliver its entire annual production of cobalt concentrate from Mukondo Mountain to Zhejiang Galico Cobalt & Nickel Materials of China. [111]
In 2016, Chinese ownership of cobalt production in the Congo was estimated at over 10% of global cobalt supply, forming a key input to the Chinese cobalt refining industry and granting China substantial influence over the global cobalt supply chain. [112] Chinese control of Congolese cobalt has raised concern in Western nations which have sought to reduce supply chain reliance upon China and have expressed concern regarding labor and human rights violations in cobalt mines in the DRC. [113] [114]
In February 2018, global asset management firm AllianceBernstein defined the DRC as economically "the Saudi Arabia of the electric vehicle age", due to its cobalt resources, as essential to the lithium-ion batteries that drive electric vehicles. [115]
On March 9, 2018, President Joseph Kabila updated the 2002 mining code, increasing royalty charges and declaring cobalt and coltan "strategic metals". [116] [117] The 2002 mining code was effectively updated on December 4, 2018. [118]
In December 2019, International Rights Advocates, a human rights NGO, filed a landmark lawsuit against Apple, Tesla, Dell, Microsoft and Google company Alphabet for "knowingly benefiting from and aiding and abetting the cruel and brutal use of young children" in mining cobalt. [119] The companies in question denied their involvement in child labour. [120] In 2024 the court ruled that the suppliers facilitate force labor but the US tech companies are not liable because they don't operate as a shared enterprise with the suppliers and that the "alleged injuries are not fairly traceable" to any of the defendants' conduct. [121]
In 2017, some exploration companies were planning to survey old silver and cobalt mines in the area of Cobalt, Ontario, where significant deposits are believed to lie. [122]
Canada's Sherritt International processes cobalt ores in nickel deposits from the Moa mines in Cuba, and the island has several others mines in Mayarí, Camagüey, and Pinar del Río. Continued investments by Sherritt International in Cuban nickel and cobalt production while acquiring mining rights for 17–20 years made the communist country third for cobalt reserves in 2019, before Canada itself. [123]
Starting from smaller amounts in 2021, Indonesia began producing cobalt as a byproduct of nickel production. By 2022, the country had become the world's second-largest cobalt producer, with Benchmark Mineral Intelligence forecasting Indonesian output to make up 20 percent of global production by 2030. [124]
In 2016, 116,000 tonnes (128,000 short tons) of cobalt was used. [9] Cobalt has been used in the production of high-performance alloys. [89] [90] It is also used in some rechargeable batteries.
Cobalt-based superalloys have historically consumed most of the cobalt produced. [89] [90] The temperature stability of these alloys makes them suitable for turbine blades for gas turbines and aircraft jet engines, although nickel-based single-crystal alloys surpass them in performance. [125] Cobalt-based alloys are also corrosion- and wear-resistant, making them, like titanium, useful for making orthopedic implants that do not wear down over time. The development of wear-resistant cobalt alloys started in the first decade of the 20th century with the stellite alloys, containing chromium with varying quantities of tungsten and carbon. Alloys with chromium and tungsten carbides are very hard and wear-resistant. [126] Special cobalt-chromium-molybdenum alloys like Vitallium are used for prosthetic parts (hip and knee replacements). [127] Cobalt alloys are also used for dental prosthetics as a useful substitute for nickel, which may be allergenic. [128] Some high-speed steels also contain cobalt for increased heat and wear resistance. The special alloys of aluminium, nickel, cobalt and iron, known as Alnico, and of samarium and cobalt (samarium–cobalt magnet) are used in permanent magnets. [129] It is also alloyed with 95% platinum for jewelry, yielding an alloy suitable for fine casting, which is also slightly magnetic. [130]
Lithium cobalt oxide (LiCoO2) is widely used in lithium-ion battery cathodes. The material is composed of cobalt oxide layers with the lithium intercalated. During discharge (i.e. when not actively being charged), the lithium is released as lithium ions. [131] Nickel–cadmium [132] (NiCd) and nickel metal hydride [133] (NiMH) batteries also include cobalt to improve the oxidation of nickel in the battery. [132] Transparency Market Research estimated the global lithium-ion battery market at $30 billion in 2015 and predicted an increase to over US$75 billion by 2024. [134]
Although in 2018 most cobalt in batteries was used in a mobile device, [135] a more recent application for cobalt is rechargeable batteries for electric cars. This industry has increased five-fold in its demand for cobalt, which makes it urgent to find new raw materials in more stable areas of the world. [136] Demand is expected to continue or increase as the prevalence of electric vehicles increases. [137] Exploration in 2016–2017 included the area around Cobalt, Ontario, an area where many silver mines ceased operation decades ago. [136] Cobalt for electric vehicles increased 81% from the first half of 2018 to 7,200 tonnes in the first half of 2019, for a battery capacity of 46.3 GWh. [138] [139]
Since child and slave labor have been repeatedly reported in cobalt mining, primarily in the artisanal mines of DR Congo, technology companies seeking an ethical supply chain have faced shortages of this raw material and [140] the price of cobalt metal reached a nine-year high in October 2017, more than US$30 a pound, versus US$10 in late 2015. [141] After oversupply, the price dropped to a more normal $15 in 2019. [142] [143] As a reaction to the issues with artisanal cobalt mining in DR Congo a number of cobalt suppliers and their customers have formed the Fair Cobalt Alliance (FCA) which aims to end the use of child labor and to improve the working conditions of cobalt mining and processing in the DR Congo. Members of FCA include Zhejiang Huayou Cobalt, Sono Motors, the Responsible Cobalt Initiative, Fairphone, Glencore and Tesla, Inc. [144] [145]
Research is being conducted by the European Union into the possibility of eliminating cobalt requirements in lithium-ion battery production. [146] [147] As of August 2020 battery makers have gradually reduced the cathode cobalt content from 1/3 (NMC 111) to 1/5 (NMC 442) to currently 1/10 (NMC 811) and have also introduced the cobalt free lithium iron phosphate cathode into the battery packs of electric cars such as the Tesla Model 3. [148] [149] In September 2020, Tesla outlined their plans to make their own, cobalt-free battery cells. [150]
Lithium iron phosphate batteries officially surpassed ternary cobalt batteries in 2021 with 52% of installed capacity. Analysts estimate that its market share will exceed 60% in 2024. [151]
Several cobalt compounds are oxidation catalysts. Cobalt acetate is used to convert xylene to terephthalic acid, the precursor of the bulk polymer polyethylene terephthalate. Typical catalysts are the cobalt carboxylates (known as cobalt soaps). They are also used in paints, varnishes, and inks as "drying agents" through the oxidation of drying oils. [152] [131] However, their use is being phased out due to toxicity concerns. [153] The same carboxylates are used to improve the adhesion between steel and rubber in steel-belted radial tires. In addition they are used as accelerators in polyester resin systems. [154] [155] [156]
Cobalt-based catalysts are used in reactions involving carbon monoxide. Cobalt is also a catalyst in the Fischer–Tropsch process for the hydrogenation of carbon monoxide into liquid fuels. [157] Hydroformylation of alkenes often uses cobalt octacarbonyl as a catalyst. [158] The hydrodesulfurization of petroleum uses a catalyst derived from cobalt and molybdenum. This process helps to clean petroleum of sulfur impurities that interfere with the refining of liquid fuels. [131]
Before the 19th century, cobalt was predominantly used as a pigment. It has been used since the Middle Ages to make smalt, a blue-colored glass. Smalt is produced by melting a mixture of roasted mineral smaltite, quartz and potassium carbonate, which yields a dark blue silicate glass, which is finely ground after the production. [159] Smalt was widely used to color glass and as pigment for paintings. [160] In 1780, Sven Rinman discovered cobalt green, and in 1802 Louis Jacques Thénard discovered cobalt blue. [161] Cobalt pigments such as cobalt blue (cobalt aluminate), cerulean blue (cobalt(II) stannate), various hues of cobalt green (a mixture of cobalt(II) oxide and zinc oxide), and cobalt violet (cobalt phosphate) are used as artist's pigments because of their superior chromatic stability. [162] [163]
Cobalt-60 (Co-60 or 60Co) is useful as a gamma-ray source because it can be produced in predictable amounts with high activity by bombarding cobalt with neutrons. It produces gamma rays with energies of 1.17 and 1.33 MeV. [30] [164]
Cobalt is used in external beam radiotherapy, sterilization of medical supplies and medical waste, radiation treatment of foods for sterilization (cold pasteurization), [165] industrial radiography (e.g. weld integrity radiographs), density measurements (e.g. concrete density measurements), and tank fill height switches. The metal has the unfortunate property of producing a fine dust, causing problems with radiation protection. Cobalt from radiotherapy machines has been a serious hazard when not discarded properly, and one of the worst radiation contamination accidents in North America occurred in 1984, when a discarded radiotherapy unit containing cobalt-60 was mistakenly disassembled in a junkyard in Juarez, Mexico. [166] [167]
Cobalt-60 has a radioactive half-life of 5.27 years. Loss of potency requires periodic replacement of the source in radiotherapy and is one reason why cobalt machines have been largely replaced by linear accelerators in modern radiation therapy. [168] Cobalt-57 (Co-57 or 57Co) is a cobalt radioisotope most often used in medical tests, as a radiolabel for vitamin B12 uptake, and for the Schilling test. Cobalt-57 is used as a source in Mössbauer spectroscopy and is one of several possible sources in X-ray fluorescence devices. [169] [170]
Nuclear weapon designs could intentionally incorporate 59Co, some of which would be activated in a nuclear explosion to produce 60Co. The 60Co, dispersed as nuclear fallout, is sometimes called a cobalt bomb. [171] [172]
Due to the ferromagnetic properties of cobalt, it is used in the production of various magnetic materials. [173] It is used in creating permanent magnets like Alnico magnets, known for their strong magnetic properties used in electric motors, sensors, and MRI machines. [174] [175] It is also used in production of magnetic alloys like cobalt steel, widely used in magnetic recording media such as hard disks and tapes. [176]
Cobalt's ability to maintain magnetic properties at high temperatures makes it valuable in magnetic recording applications, ensuring reliable data storage devices. [177] Cobalt also contributes to specialized magnets such as samarium-cobalt and neodymium-iron-boron magnets, which are vital in electronics for components like sensors and actuators. [178]
Cobalt is essential to the metabolism of all animals. It is a key constituent of cobalamin, also known as vitamin B12, the primary biological reservoir of cobalt as an ultratrace element. [181] [182] Bacteria in the stomachs of ruminant animals convert cobalt salts into vitamin B12, a compound which can only be produced by bacteria or archaea. A minimal presence of cobalt in soils therefore markedly improves the health of grazing animals, and an uptake of 0.20 mg/kg a day is recommended, because they have no other source of vitamin B12. [183]
Proteins based on cobalamin use corrin to hold the cobalt. Coenzyme B12 features a reactive C-Co bond that participates in the reactions. [184] In humans, B12 has two types of alkyl ligand: methyl and adenosyl. MeB12 promotes methyl (−CH3) group transfers. The adenosyl version of B12 catalyzes rearrangements in which a hydrogen atom is directly transferred between two adjacent atoms with concomitant exchange of the second substituent, X, which may be a carbon atom with substituents, an oxygen atom of an alcohol, or an amine. Methylmalonyl coenzyme A mutase (MUT) converts MMl-CoA to Su-CoA, an important step in the extraction of energy from proteins and fats. [185]
Although far less common than other metalloproteins (e.g. those of zinc and iron), other cobaltoproteins are known besides B12. These proteins include methionine aminopeptidase 2, an enzyme that occurs in humans and other mammals that does not use the corrin ring of B12, but binds cobalt directly. Another non-corrin cobalt enzyme is nitrile hydratase, an enzyme in bacteria that metabolizes nitriles. [186]
In humans, consumption of cobalt-containing vitamin B12 meets all needs for cobalt. For cattle and sheep, which meet vitamin B12 needs via synthesis by resident bacteria in the rumen, there is a function for inorganic cobalt. In the early 20th century, during the development of farming on the North Island Volcanic Plateau of New Zealand, cattle suffered from what was termed "bush sickness". It was discovered that the volcanic soils lacked the cobalt salts essential for the cattle food chain. [187] [188] The "coast disease" of sheep in the Ninety Mile Desert of the Southeast of South Australia in the 1930s was found to originate in nutritional deficiencies of trace elements cobalt and copper. The cobalt deficiency was overcome by the development of "cobalt bullets", dense pellets of cobalt oxide mixed with clay given orally for lodging in the animal's rumen.[ clarification needed ] [189] [188] [190]
Hazards | |
---|---|
GHS labelling: [191] | |
Danger | |
H302, H317, H319, H334, H341, H350, H360F, H412 | |
P273, P280, P301+P312, P302+P352, P305+P351+P338, P308+P313 | |
NFPA 704 (fire diamond) |
The LD50 value for soluble cobalt salts has been estimated to be between 150 and 500 mg/kg. [192] In the US, the Occupational Safety and Health Administration (OSHA) has designated a permissible exposure limit (PEL) in the workplace as a time-weighted average (TWA) of 0.1 mg/m3. The National Institute for Occupational Safety and Health (NIOSH) has set a recommended exposure limit (REL) of 0.05 mg/m3, time-weighted average. The IDLH (immediately dangerous to life and health) value is 20 mg/m3. [193]
However, chronic cobalt ingestion has caused serious health problems at doses far less than the lethal dose. In 1966, the addition of cobalt compounds to stabilize beer foam in Canada led to a peculiar form of toxin-induced cardiomyopathy, which came to be known as beer drinker's cardiomyopathy. [194] [195]
Furthermore, cobalt metal is suspected of causing cancer (i.e., possibly carcinogenic, IARC Group 2B) as per the International Agency for Research on Cancer (IARC) Monographs. [196]
It causes respiratory problems when inhaled. [197] It also causes skin problems when touched; after nickel and chromium, cobalt is a major cause of contact dermatitis. [198]
Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slow to react with air under standard conditions because a passivation layer of nickel oxide forms on the surface that prevents further corrosion. Even so, pure native nickel is found in Earth's crust only in tiny amounts, usually in ultramafic rocks, and in the interiors of larger nickel–iron meteorites that were not exposed to oxygen when outside Earth's atmosphere.
Ore is natural rock or sediment that contains one or more valuable minerals concentrated above background levels, typically containing metals, that can be mined, treated and sold at a profit. The grade of ore refers to the concentration of the desired material it contains. The value of the metals or minerals a rock contains must be weighed against the cost of extraction to determine whether it is of sufficiently high grade to be worth mining and is therefore considered an ore. A complex ore is one containing more than one valuable mineral.
Tungsten is a chemical element; it has symbol W and atomic number 74. It is a rare metal found naturally on Earth almost exclusively as compounds with other elements. It was identified as a distinct element in 1781 and first isolated as a metal in 1783. Its important ores include scheelite and wolframite, the latter lending the element its alternative name.
Vanadium is a chemical element; it has symbol V and atomic number 23. It is a hard, silvery-grey, malleable transition metal. The elemental metal is rarely found in nature, but once isolated artificially, the formation of an oxide layer (passivation) somewhat stabilizes the free metal against further oxidation.
Limonite is an iron ore consisting of a mixture of hydrated iron(III) oxide-hydroxides in varying composition. The generic formula is frequently written as FeO(OH)·nH2O, although this is not entirely accurate as the ratio of oxide to hydroxide can vary quite widely. Limonite is one of the three principal iron ores, the others being hematite and magnetite, and has been mined for the production of iron since at least 400 BC.
A lithium-ion or Li-ion battery is a type of rechargeable battery that uses the reversible intercalation of Li+ ions into electronically conducting solids to store energy. In comparison with other commercial rechargeable batteries, Li-ion batteries are characterized by higher specific energy, higher energy density, higher energy efficiency, a longer cycle life, and a longer calendar life. Also noteworthy is a dramatic improvement in lithium-ion battery properties after their market introduction in 1991: over the following 30 years, their volumetric energy density increased threefold while their cost dropped tenfold.
Polymetallic nodules, also called manganese nodules, are mineral concretions on the sea bottom formed of concentric layers of iron and manganese hydroxides around a core. As nodules can be found in vast quantities, and contain valuable metals, deposits have been identified as a potential economic interest. Depending on their composition and autorial choice, they may also be called ferromanganese nodules. Ferromanganese nodules are mineral concretions composed of silicates and insoluble iron and manganese oxides that form on the ocean seafloor and terrestrial soils. The formation mechanism involves a series of redox oscillations driven by both abiotic and biotic processes. As a byproduct of pedogenesis, the specific composition of a ferromanganese nodule depends on the composition of the surrounding soil. The formation mechanisms and composition of the nodules allow for couplings with biogeochemical cycles beyond iron and manganese. The high relative abundance of nickel, copper, manganese, and other rare metals in nodules has increased interest in their use as a mining resource.
Malachite is a copper carbonate hydroxide mineral, with the formula Cu2CO3(OH)2. This opaque, green-banded mineral crystallizes in the monoclinic crystal system, and most often forms botryoidal, fibrous, or stalagmitic masses, in fractures and deep, underground spaces, where the water table and hydrothermal fluids provide the means for chemical precipitation. Individual crystals are rare, but occur as slender to acicular prisms. Pseudomorphs after more tabular or blocky azurite crystals also occur.
The platinum-group metals (PGMs), also known as the platinoids, platinides, platidises, platinum group, platinum metals, platinum family or platinum-group elements (PGEs), are six noble, precious metallic elements clustered together in the periodic table. These elements are all transition metals in the d-block.
Group 9, by modern IUPAC numbering, is a group (column) of chemical elements in the d-block of the periodic table. Members of Group 9 include cobalt (Co), rhodium (Rh), iridium (Ir) and meitnerium (Mt). These elements are among the rarest of the transition metals.
Group 12, by modern IUPAC numbering, is a group of chemical elements in the periodic table. It includes zinc (Zn), cadmium (Cd), mercury (Hg), and copernicium (Cn). Formerly this group was named IIB by CAS and old IUPAC system.
Copper(II) oxide or cupric oxide is an inorganic compound with the formula CuO. A black solid, it is one of the two stable oxides of copper, the other being Cu2O or copper(I) oxide (cuprous oxide). As a mineral, it is known as tenorite, or sometimes black copper. It is a product of copper mining and the precursor to many other copper-containing products and chemical compounds.
A native metal is any metal that is found pure in its metallic form in nature. Metals that can be found as native deposits singly or in alloys include antimony, arsenic, bismuth, cadmium, chromium, cobalt, indium, iron, manganese, molybdenum, nickel, niobium, rhenium, tantalum, tellurium, tin, titanium, tungsten, vanadium, and zinc, as well as the gold group and the platinum group. Among the alloys found in native state have been brass, bronze, pewter, German silver, osmiridium, electrum, white gold, silver-mercury amalgam, and gold-mercury amalgam.
The mining industry of the Democratic Republic of the Congo produces copper, diamonds, tantalum, tin, gold, and more than 70% of global cobalt production. Minerals and petroleum are central to the DRC's economy, making up more than 95% of the value of its exports.
Cobalt extraction refers to the techniques used to extract cobalt from its ores and other compound ores. Several methods exist for the separation of cobalt from copper and nickel. They depend on the concentration of cobalt and the exact composition of the ore used.
A nickel mine is a mine that produces nickel. Some mines produce nickel primarily, while some mines produce nickel as a side-product of some other metal that has a higher concentration in the ore.
Huayou Cobalt Co., Ltd primarily operates as a supplier of cobalt and its associated products, such as cobalt tetroxide, cobalt oxide, cobalt carbonate, cobalt hydroxide, cobalt oxalate, cobalt sulfate, and cobalt monoxide. The company is headquartered in the Tongxiang Economic Development Zone of Zhejiang, China.
The lithium nickel cobalt aluminium oxides (abbreviated as Li-NCA, LNCA, or NCA) are a group of mixed metal oxides. Some of them are important due to their application in lithium ion batteries. NCAs are used as active material in the positive electrode (which is the cathode when the battery is discharged). NCAs are composed of the cations of the chemical elements lithium, nickel, cobalt and aluminium. The compounds of this class have a general formula LiNixCoyAlzO2 with x + y + z = 1. In case of the NCA comprising batteries currently available on the market, which are also used in electric cars and electric appliances, x ≈ 0.8, and the voltage of those batteries is between 3.6 V and 4.0 V, at a nominal voltage of 3.6 V or 3.7 V. A version of the oxides currently in use in 2019 is LiNi0.84Co0.12Al0.04O2.
Lithium nickel manganese cobalt oxides (abbreviated NMC, Li-NMC, LNMC, or NCM) are mixed metal oxides of lithium, nickel, manganese and cobalt with the general formula LiNixMnyCo1-x-yO2. These materials are commonly used in lithium-ion batteries for mobile devices and electric vehicles, acting as the positively charged cathode.
The electric vehicle supply chain comprises the mining and refining of raw materials and the manufacturing processes that produce batteries and other components for electric vehicles.
cobaltum nostri uocant, Græci cadmiam; Cf. index under " cobaltum ".
Dæmonum: Dæmon subterraneus trunculentus: bergterufel; mitis bergmenlein/kobel/guttel
the mine would be placed on care and maintenance for a period of no less than two years