Cobalt compounds are chemical compounds formed by cobalt with other elements.
Many halides of cobalt(II) are known.e cobalt(II) fluoride (CoF2) which is a pink solid, cobalt(II) chloride (CoCl2) which is a blue solid, cobalt(II) bromide (CoBr2) which is a green solid, and cobalt(II) iodide (CoI2) which is a blue-black solid. In addition to the anhydrous forms, these cobalt halides also have hydrates. Anhydrous cobalt(II) chloride is blue, while the hexahydrate is magenta in colour. [1] Because the color change of cobalt(II) chloride in different hydrates, it can be used to manufacture color-changing silica gel.
Anhydrous cobalt halides react with nitric oxide at 70~120 °C to generate [Co(NO)2X]2 (X = Cl, Br or I). The complex of cobalt halides and triethylphosphine ((C2H5)3P) can absorb nitric monoxide in benzene to form the diamagnetic material Co(NO)X2(P(C2H5)3) [2]
In the reaction Co3+
+ e− → Co2+
, the potential is +1.92 V, which is higher than that of Cl2 to Cl− (+1.36 V). Therefore, the interaction of Co3+ with Cl− produces Co2+ and releases chlorine gas. The potential from F2 to F− is as high as +2.87 V, and cobalt(III) fluoride (CoF3) can exist stably. It is a fluorinated reagent and reacts violently with water. [3]
Cobalt can form various oxides, such as CoO, Co2O3 and Co3O4. Co3O4, at 950 °C, decomposes to CoO. [4]
Soluble cobalt salts react with sodium hydroxide to obtain cobalt(II) hydroxide (Co(OH)2): [5]
Cobalt(II) hydroxide can be oxidized to the Co(III) compound CoO(OH) under alkaline conditions.
Cobalt powder reacts with ammonia to form two kinds of nitrides, Co2N and Co3N. Cobalt reacts with phosphorus or arsenic to form Co2P, CoP, [2] CoP2, [6] CoAs2 and other substances. [2] The former three compounds are of interest as catalysts for water electrolysis. [6] [7] [8]
Cobalt(II) azide (Co(N3)2) is another binary compound of cobalt and nitrogen that can explode when heated. Cobalt(II) and azide can form Co(N
3)2−
4 complexes. [9] Cobalt pentazolide Co(N5)2 was discovered in 2017, and it exists in the form of the hydrate [Co(H2O)4(N5)2]·4H2O. It decomposes at 50~145 °C to form cobalt(II) azide, becoming anhydrous and releasing nitrogen, and exploding when heated further. This compound can be obtained by reacting (N5)6(H3O)3(NH4)4Cl [10] or Na(H2O)(N5)]·2H2O [11] and [Co(H2O)6](NO3)2 at room temperature. Hydrogen bonding of water stabilizes this molecule. [11]
Cobalt can easily react with nitric acid to form cobalt(II) nitrate Co(NO3)2. Cobalt(II) nitrate exists in the anhydrous form and the hydrate form, of which the hexahydrate is the most common. Cobalt nitrate hexahydrate (Co(NO3)2·6H2O) is a red deliquescence crystal that is easily soluble in water, [12] and its molecule contains cobalt(II) hydrated ions ([Co(H2O)6]2+) and free nitrate ions. [13] It can be obtained by precipitation from solution.
As for all metals, molecular compounds and polyatomic ions of cobalt are classified as coordination complexes, that is, molecules or ions that contain cobalt linked to one or more ligands. These can be combinations of a potentially infinite variety of molecules and ions, such as:
These attached groups affect the stability of oxidation states of the cobalt atoms, according to general principles of electronegativity and of the hardness–softness. For example, Co3+ complexes tend to have ammine ligands. Because phosphorus is softer than nitrogen, phosphine ligands tend to feature the softer Co2+ and Co+, an example being tris(triphenylphosphine)cobalt(I) chloride (P(C
6H
5)
3)
3CoCl). The more electronegative (and harder) oxide and fluoride can stabilize Co4+ and Co5+ derivatives, e.g. caesium hexafluorocobaltate(IV) (Cs2CoF6) and potassium percobaltate (K3CoO4). [17]
Alfred Werner, a Nobel-prize winning pioneer in coordination chemistry, worked with compounds of empirical formula [Co(NH
3)
6]3+
. One of the isomers determined was cobalt(III) hexammine chloride. This coordination complex, a typical Werner-type complex, consists of a central cobalt atom coordinated by six ammine orthogonal ligands and three chloride counteranions. Using chelating ethylenediamine ligands in place of ammonia gives tris(ethylenediamine)cobalt(III) ([Co(en)
3]3+
), which was one of the first coordination complexes to be resolved into optical isomers. The complex exists in the right- and left-handed forms of a "three-bladed propeller". This complex was first isolated by Werner as yellow-gold needle-like crystals. [18] [19]
Vitamin B12 is a cobalt-centered organic biomolecule, soluble in water, and involved in the methylation and synthesis of nucleic acid and neurotransmitter. [20] The main source is the offal or meat of herbivorous animals. [21]
Dicobalt octacarbonyl (Co2(CO)8) is an orange-red crystal with two isomers in solution: [22]
It reacts with hydrogen or sodium to form HCo(CO)4 or NaCo(CO)4. It is a catalyst in carbonylation and hydrosilylation reactions. [23]
Cobaltocene (Co(C5H5)2) is a cyclopentadiene complex of cobalt. It has 19 valence electrons and is easily oxidized to Co(C
5H
5)+
2 with a stable structure of 18 electrons by reaction. [24] It is a structural analog to ferrocene, with cobalt in place of iron. Cobaltocene is much more sensitive to oxidation than ferrocene. [25]
Copper(II) nitrate describes any member of the family of inorganic compounds with the formula Cu(NO3)2(H2O)x. The hydrates are blue solids. Anhydrous copper nitrate forms blue-green crystals and sublimes in a vacuum at 150-200 °C. Common hydrates are the hemipentahydrate and trihydrate.
Cobalt(II) chloride is an inorganic compound, a salt of cobalt and chlorine, with the formula CoCl
2. The compound forms several hydrates CoCl
2·nH
2O, for n = 1, 2, 6, and 9. Claims of the formation of tri- and tetrahydrates have not been confirmed. The anhydrous form is a blue crystalline solid; the dihydrate is purple and the hexahydrate is pink. Commercial samples are usually the hexahydrate, which is one of the most commonly used cobalt salts in the lab.
Cobalt(III) fluoride is the inorganic compound with the formula CoF3. Hydrates are also known. The anhydrous compound is a hygroscopic brown solid. It is used to synthesize organofluorine compounds.
Iron(III) oxide-hydroxide or ferric oxyhydroxide is the chemical compound of iron, oxygen, and hydrogen with formula FeO(OH).
Scandium(III) nitrate, Sc(NO3)3, is an ionic compound. It is an oxidizer, as all nitrates are. The salt is applied in optical coatings, catalysts, electronic ceramics and the laser industry.
Zinc nitrate is an inorganic chemical compound with the formula Zn(NO3)2. This colorless, crystalline salt is highly deliquescent. It is typically encountered as a hexahydrate Zn(NO3)2·6H2O. It is soluble in both water and alcohol.
Iron(III) nitrate, or ferric nitrate, is the name used for a series of inorganic compounds with the formula Fe(NO3)3.(H2O)n. Most common is the nonahydrate Fe(NO3)3.(H2O)9. The hydrates are all pale colored, water-soluble paramagnetic salts.
The chemical element nitrogen is one of the most abundant elements in the universe and can form many compounds. It can take several oxidation states; but the most common oxidation states are -3 and +3. Nitrogen can form nitride and nitrate ions. It also forms a part of nitric acid and nitrate salts. Nitrogen compounds also have an important role in organic chemistry, as nitrogen is part of proteins, amino acids and adenosine triphosphate.
Chromium compounds are compounds containing the element chromium (Cr). Chromium is a member of group 6 of the transition metals. The +3 and +6 states occur most commonly within chromium compounds, followed by +2; charges of +1, +4 and +5 for chromium are rare, but do nevertheless occasionally exist.
Cobalt nitrate is the inorganic compound with the formula Co(NO3)2.xH2O. It is cobalt(II)'s salt. The most common form is the hexahydrate Co(NO3)2·6H2O, which is a red-brown deliquescent salt that is soluble in water and other polar solvents.
Cobalt(III) nitrate is an inorganic compound with the chemical formula Co(NO3)3. It is a green, diamagnetic solid that sublimes at ambient temperature.
Cerium nitrate refers to a family of nitrates of cerium in the +3 or +4 oxidation state. Often these compounds contain water, hydroxide, or hydronium ions in addition to cerium and nitrate. Double nitrates of cerium also exist.
Cobalt(III) chloride or cobaltic chloride is an unstable and elusive compound of cobalt and chlorine with formula CoCl
3. In this compound, the cobalt atoms have a formal charge of +3.
Indium(III) nitrate is a nitrate salt of indium which forms various hydrates. Only the pentahydrate has been crystallographically verified. Other hydrates are also reported in literature, such as the trihydrate.
A transition metal nitrate complex is a coordination compound containing one or more nitrate ligands. Such complexes are common starting reagents for the preparation of other compounds.
Europium compounds are compounds formed by the lanthanide metal europium (Eu). In these compounds, europium generally exhibits the +3 oxidation state, such as EuCl3, Eu(NO3)3 and Eu(CH3COO)3. Compounds with europium in the +2 oxidation state are also known. The +2 ion of europium is the most stable divalent ion of lanthanide metals in aqueous solution. Many europium compounds fluoresce under ultraviolet light due to the excitation of electrons to higher energy levels. Lipophilic europium complexes often feature acetylacetonate-like ligands, e.g., Eufod.
Lutetium compounds are compounds formed by the lanthanide metal lutetium (Lu). In these compounds, lutetium generally exhibits the +3 oxidation state, such as LuCl3, Lu2O3 and Lu2(SO4)3. Aqueous solutions of most lutetium salts are colorless and form white crystalline solids upon drying, with the common exception of the iodide. The soluble salts, such as nitrate, sulfate and acetate form hydrates upon crystallization. The oxide, hydroxide, fluoride, carbonate, phosphate and oxalate are insoluble in water.
Carbonate nitrates are mixed anion compounds containing both carbonate and nitrate ions.
Cobalt(II) perchlorate is an inorganic chemical compound with the formula Co(ClO4)2·nH2O (n = 0,6). The pink anhydrous and red hexahydrate forms are both hygroscopic solids.