Cobalt(II) oxalate

Last updated
Cobalt(II) oxalate
Cobalt (II) oxalate.jpg
Cobalt(II)-oxalate-dihydrate-from-xtal-2005-CM-3D-balls.png
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.011.281 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C2H2O4.Co/c3-1(4)2(5)6;/h(H,3,4)(H,5,6);/q;+2/p-2 X mark.svgN
    Key: MULYSYXKGICWJF-UHFFFAOYSA-L X mark.svgN
  • InChI=1/C2H2O4.Co/c3-1(4)2(5)6;/h(H,3,4)(H,5,6);/q;+2/p-2
    Key: MULYSYXKGICWJF-NUQVWONBAF
  • C(=O)(C(=O)[O-])[O-].[Co+2]
Properties
CoC2O4
Molar mass 146.9522 g/mol
Appearancegray/pink powder
Odor odorless
Density 3.01 g/cm3
Melting point 250 °C (482 °F; 523 K) (decomposes)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Cobalt(II) oxalate is the inorganic compound with the formula of CoC2O4. Like other simple inorganic oxalates, it is a coordination polymer. The oxalate ligands bridge of Co(OH2)2 centres. Each cobalt adopts octahedral coordination geometry. [1]

It is used in the preparation of cobalt catalysts, and cobalt metal powder for powder-metallurgical applications. It is made in process of recycling lithium-ion batteries, where the cobalt is obtained from cathode material (LiCoO2) by leaching with sulfuric acid and then precipitated with ammonium oxalate.[ citation needed ]

Many cobalt(III) oxalate complexes are known, including [Co(C2O4)3]3- and [Co(C2H4(NH2)2)C2O4)2]. [2] [3]

Related Research Articles

<span class="mw-page-title-main">Hexol</span> Chemical compound

In chemistry, hexol is a cation with formula {[Co(NH3)4(OH)2]3Co}6+ — a coordination complex consisting of four cobalt cations in oxidation state +3, twelve ammonia molecules NH
3
, and six hydroxy anions HO
, with a net charge of +6. The hydroxy groups act as bridges between the central cobalt atom and the other three, which carry the ammonia ligands.

<span class="mw-page-title-main">Cobalt(II) nitrate</span> Chemical compound

Cobalt nitrate is the inorganic compound with the formula Co(NO3)2.xH2O. It is cobalt(II)'s salt. The most common form is the hexahydrate Co(NO3)2·6H2O, which is a red-brown deliquescent salt that is soluble in water and other polar solvents.

<span class="mw-page-title-main">Potassium ferrioxalate</span> Chemical compound

Potassium ferrioxalate, also called potassium trisoxalatoferrate or potassium tris(oxalato)ferrate(III) is a chemical compound with the formula K3[Fe(C2O4)3]. It often occurs as the trihydrate K3[Fe(C2O4)3]·3H2O. Both are crystalline compounds, lime green in colour.

<span class="mw-page-title-main">Tris(ethylenediamine)cobalt(III) chloride</span> Chemical compound

Tris(ethylenediamine)cobalt(III) chloride is an inorganic compound with the formula [Co(en)3]Cl3 (where "en" is the abbreviation for ethylenediamine). It is the chloride salt of the coordination complex [Co(en)3]3+. This trication was important in the history of coordination chemistry because of its stability and its stereochemistry. Many different salts have been described. The complex was first described by Alfred Werner who isolated this salt as yellow-gold needle-like crystals.

Cobalt(II) cyanide is the inorganic compound with the formula Co(CN)2. It is coordination polymer that has attracted intermittent attention over many years in the area of inorganic synthesis and homogeneous catalysis.

<i>cis</i>-Dichlorobis(ethylenediamine)cobalt(III) chloride Chemical compound

cis-Dichlorobis(ethylenediamine)cobalt(III) chloride is a salt with the formula [CoCl2(en)2]Cl (en = ethylenediamine). The salt consists of a cationic coordination complex and a chloride anion. It is a violet diamagnetic solid that is soluble in water. One chloride ion in this salt readily undergoes ion exchange, but the two other chlorides are less reactive, being bound to the metal center.

<span class="mw-page-title-main">Iron(II) oxalate</span> Chemical compound

Ferrous oxalate (iron(II) oxalate) is an inorganic compound with the formula FeC2O4 · xH2O where x is typically 2. These are orange compounds, poorly soluble in water.

The oxalatonickelates are a class of compounds that contain nickel complexed by oxalate groups. They form a series of double salts, and include clusters with multiple nickel atoms. Since oxalate functions as a bidentate ligand it can satisfy two coordinate positions around the nickel atom, or it can bridge two nickel atoms together.

<i>trans</i>-Dichlorobis(ethylenediamine)cobalt(III) chloride Chemical compound

trans-Dichlorobis(ethylenediamine)cobalt(III) chloride is a salt with the formula [CoCl2(en)2]Cl (en = ethylenediamine). It is a green diamagnetic solid that is soluble in water. It is the monochloride salt of the cationic coordination complex [CoCl2(en)2]+. One chloride ion in this salt readily undergoes ion exchange but the two other chlorides are less reactive, being bound to the metal center. The more stable trans-dichlorobis(ethylenediamine)cobalt(III) chloride is also known.

<span class="mw-page-title-main">Caesium oxalate</span> Chemical compound

Caesium oxalate (standard IUPAC spelling) dicesium oxalate, or cesium oxalate (American spelling) is the oxalate of caesium. Caesium oxalate has the chemical formula of Cs2C2O4.

<span class="mw-page-title-main">Transition metal oxalate complex</span>

Transition metal oxalate complexes are coordination complexes with oxalate (C2O42−) ligands. Some are useful commercially, but the topic has attracted regular scholarly scrutiny. Oxalate (C2O42-) is a kind of dicarboxylate ligand. As a small, symmetrical dinegative ion, oxalate commonly forms five-membered MO2C2 chelate rings. Mixed ligand complexes are known, e.g., [Co(C2O4)(NH3)4]κ+.

<span class="mw-page-title-main">Yttrium oxalate</span> Chemical compound

Yttrium oxalate is an inorganic compound, a salt of yttrium and oxalic acid with the chemical formula Y2(C2O4)3. The compound does not dissolve in water and forms crystalline hydrates—colorless crystals.

The carbonate oxalates are mixed anion compounds that contain both carbonate (CO3) and oxalate (C2O4) anions. Most compounds incorporate large trivalent metal ions, such as the rare earth elements. Some carbonate oxalate compounds of variable composition are formed by heating oxalates.

<span class="mw-page-title-main">Oxalate phosphate</span> Chemical compound containing oxalate and phosphate anions

The oxalate phosphates are chemical compounds containing oxalate and phosphate anions. They are also called oxalatophosphates or phosphate oxalates. Some oxalate-phosphate minerals found in bat guano deposits are known. Oxalate phosphates can form metal organic framework compounds.

<span class="mw-page-title-main">Carbonatobis(ethylenediamine)cobalt(III) chloride</span> Chemical compound

Carbonatobis(ethylenediamine)cobalt(III) chloride is a salt with the formula [CoCO3(en)2]Cl (en = ethylenediamine). It is a red diamagnetic solid that is soluble in water. It is the monochloride salt of the cationic coordination complex [CoCO3(en)2]+. The chloride ion in this salt readily undergoes ion exchange. The compound is synthesized by the oxidation of a mixture of cobalt(II) chloride, lithium hydroxide, and ethylenediamine in the presence of carbon dioxide:

The oxalate phosphites are chemical compounds containing oxalate and phosphite anions. They are also called oxalatophosphites or phosphite oxalates. Oxalate phosphates can form metal organic framework compounds.

<span class="mw-page-title-main">Niobium oxalate</span> Chemical compound

Niobium(V) oxalate is the hydrogen oxalate salt of niobium(V). The neutral salt has not been prepared.

Oxalate sulfates are mixed anion compounds containing oxalate and sulfate. They are mostly transparent, and any colour comes from the cations.

Cobalt compounds are chemical compounds formed by cobalt with other elements.

Sodium tris(carbonato)cobalt(III) is the name given to the inorganic compound with the formula Na3Co(CO3)3•3H2O. The salt contains an olive-green metastable cobalt(III) coordination complex. The salt is sometimes referred to as the “Field-Durrant precursor” and is prepared by the “Field-Durrant synthesis”. It is used in the synthesis of other cobalt(III) complexes. Otherwise cobalt(III) complexes are generated from cobalt(II) precursors, a process that requires an oxidant.

References

  1. Bacsa, J.; Eve, D.; Dunbar, K. R. (2005). "catena-Poly[[diaquacobalt(II)]-μ-oxalato]". Acta Crystallogr. C . 61 (Pt 1): m58–m60. doi:10.1107/S0108270104030409. PMID   15640580.
  2. Kauffman, George B.; Takahashi, Lloyd T.; Sugisaka, Nobuyuki (1966). "Resolution of the Trioxalatocobaltate(III) Ion". Inorganic Syntheses. 8: 207–211. doi:10.1002/9780470132395.ch55.
  3. Worrell, J. H.; Kipp, E. B. (1972). "Resolution of the (Ethylenediamine)bis(oxalato)cobaltate(III) Ion". Inorganic Syntheses. 13: 195–202. doi:10.1002/9780470132449.ch40.