Names | |
---|---|
IUPAC name Iron(II) oxalate | |
Other names Iron oxalate Ferrous oxalate | |
Identifiers | |
3D model (JSmol) |
|
ChemSpider | |
ECHA InfoCard | 100.007.472 |
EC Number |
|
PubChem CID | |
UNII |
|
CompTox Dashboard (EPA) |
|
| |
| |
Properties | |
FeC2O4 (anhydrous) FeC2O4 · 2 H2O (dihydrate) | |
Molar mass | 143.86 g/mol (anhydrous) 179.89 g/mol (dihydrate) |
Appearance | yellow powder |
Odor | odorless |
Density | 2.28 g/cm3 |
Melting point | dihydrate: 150–160 °C (302–320 °F; 423–433 K) (decomposes) |
dihydrate: 0.097 g/100ml (25 °C) [1] | |
Hazards | |
GHS labelling: | |
[2] | |
Warning | |
H302, H312 [2] | |
P280 [2] | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Ferrous oxalate (iron(II) oxalate) refers to inorganic compounds with the formula FeC2O4(H2O)x where x is 0 or 2. These are orange compounds. Characteristic of metal oxalate complexes, these compounds tend to be polymeric, hence their low solubility in water.
Like other iron oxalates, ferrous oxalates feature octahedral Fe centers. The dihydrate FeC2O4(H2O)x is a coordination polymer, consisting of chains of oxalate-bridged ferrous centers, each with two aquo ligands. [3]
When heated to 120 °C, the dihydrate dehydrates, and the anhydrous ferrous oxalate decomposes near 190 °C. [4] The products of thermal decomposition is a mixture of iron oxides and pyrophoric iron metal, as well as released carbon dioxide, carbon monoxide, and water. [5]
Ferrous oxalates are precursors to iron phosphates, which are of value in batteries. [6]
Anhydrous iron(II) oxalate is unknown among minerals as of 2020. However, the dihydrate is known as humboldtine. [7] [8] A related, although much more complex mineral is stepanovite,
Na[Mg(H2O)6] [Fe3+(C2O4)3]·3H2O is an unusual example of a naturally-occurring ferrioxalate. [9] [8]
In chemistry, iron(II) refers to the element iron in its +2 oxidation state. The adjective ferrous or the prefix ferro- is often used to specify such compounds, as in ferrous chloride for iron(II) chloride (FeCl2). The adjective ferric is used instead for iron(III) salts, containing the cation Fe3+. The word ferrous is derived from the Latin word ferrum, meaning "iron".
Iron(III) chloride describes the inorganic compounds with the formula FeCl3(H2O)x. Also called ferric chloride, these compounds are some of the most important and commonplace compounds of iron. They are available both in anhydrous and in hydrated forms, which are both hygroscopic. They feature iron in its +3 oxidation state. The anhydrous derivative is a Lewis acid, while all forms are mild oxidizing agents. It is used as a water cleaner and as an etchant for metals.
Iron(II) chloride, also known as ferrous chloride, is the chemical compound of formula FeCl2. It is a paramagnetic solid with a high melting point. The compound is white, but typical samples are often off-white. FeCl2 crystallizes from water as the greenish tetrahydrate, which is the form that is most commonly encountered in commerce and the laboratory. There is also a dihydrate. The compound is highly soluble in water, giving pale green solutions.
Iron(III) phosphate, also ferric phosphate, is the inorganic compound with the formula FePO4. Four polymorphs of anhydrous FePO4 are known. Additionally two polymorphs of the dihydrate FePO4·(H2O)2 are known. These materials have attracted much interest as potential cathode materials in batteries.
Potassium ferrioxalate, also called potassium trisoxalatoferrate or potassium tris(oxalato)ferrate(III) is a chemical compound with the formula K3[Fe(C2O4)3]. It often occurs as the trihydrate K3[Fe(C2O4)3]·3H2O. Both are crystalline compounds, lime green in colour.
Sodium ferrioxalate are inorganic compounds with the formula Na3Fe(C2O4)3(H2O)n. The pentahydrate has been characterized by X-ray crystallography. In contrast the potassium, ammonium, and rubidium salts crystallize from water as their trihydrates.
Ferric oxalate, also known as iron(III) oxalate, refers to inorganic compounds with the formula Fe2(C2O4)3(H2O)x but could also refer to salts of [Fe(C2O4)3]3-. Fe2(C2O4)3(H2O)x are coordination polymers with varying degrees of hydration. The coordination complex with the formula [Fe(C2O4)3]3- forms a variety of salts, a well-known example being potassium ferrioxalate. This article emphasizes the coordination polymers.
Magnesium oxalate is an organic compound comprising a magnesium cation with a 2+ charge bonded to an oxalate anion. It has the chemical formula MgC2O4. Magnesium oxalate is a white solid that comes in two forms: an anhydrous form and a dihydrate form where two water molecules are complexed with the structure. Both forms are practically insoluble in water and are insoluble in organic solutions.
Chromium(II) oxalate is an inorganic compound with the chemical formula CrC2O4.
Thorium oxalate is the inorganic compound with the formula Th(C2O4)2(H2O)4. It is a white insoluble solid prepared by the reaction of thorium(IV) salts with an oxalic acid. The material is a coordination polymer. Each Th(IV) center is bound to 10 oxygen centers: eight provided by the bridging oxalates and two by a pair of aquo ligands. Two additional water of hydration are observed in the lattice.
The oxalatonickelates are a class of compounds that contain nickel complexed by oxalate groups. They form a series of double salts, and include clusters with multiple nickel atoms. Since oxalate functions as a bidentate ligand it can satisfy two coordinate positions around the nickel atom, or it can bridge two nickel atoms together.
Potassium ferrooxalate, also known as potassium bisoxalatoferrate(II), is a salt with the formula K2Fe(C2O4)2(H2O)x. The anion is a transition metal oxalate complex, consisting of an atom of iron in the +2 oxidation state bound to oxalate (C
2O2−
4) ligands and water.
Caesium oxalate, or dicesium oxalate, or cesium oxalate is a chemical compound with the chemical formula Cs2C2O4. It is a caesium salt of oxalic acid. It consists of caesium cations Cs+ and oxalate anions C2O2−4.
The nickel organic acid salts are organic acid salts of nickel. In many of these the ionised organic acid acts as a ligand.
Ferrioxalate or trisoxalatoferrate(III) is a trivalent anion with formula [Fe(C2O4)3]3−. It is a transition metal complex consisting of an iron atom in the +3 oxidation state and three bidentate oxalate ions C2O2−4 anions acting as ligands.
Copper(II) oxalate are inorganic compounds with the chemical formula CuC2O4(H2O)x. The value of x can be 0, 0.44, and 1. Two of these species are found as secondary minerals, whewellite (monohydrate) and moolooite. The anhydrous compound has been characterized by X-ray crystallography. Many transition metal oxalate complexes are known.
Yttrium oxalate is an inorganic compound, a salt of yttrium and oxalic acid with the chemical formula Y2(C2O4)3. The compound does not dissolve in water and forms crystalline hydrates—colorless crystals.
The oxalate phosphates are chemical compounds containing oxalate and phosphate anions. They are also called oxalatophosphates or phosphate oxalates. Some oxalate-phosphate minerals found in bat guano deposits are known. Oxalate phosphates can form metal organic framework compounds.
Humboldtine is a rarely occurring mineral from the mineral class of "organic compounds" with the chemical composition FeC2O4•2H2O and is therefore a water-containing iron(II) oxalate or the iron salt of oxalic acid.
An oxalate chloride or oxalato chloride is a mixed anion compound contains both oxalate and chloride anions.