![]() | |
![]() | |
Names | |
---|---|
IUPAC name Potassium ferrate(VI) | |
Other names Potassium ferrate Dipotassium ferrate | |
Identifiers | |
3D model (JSmol) | |
PubChem CID | |
| |
| |
Properties | |
K2FeO4 | |
Molar mass | 198.0392 g/mol |
Appearance | Dark purple solid |
Density | 2.829 g/cm3 |
Melting point | >198 °C (decomposes) |
soluble in 1M KOH | |
Solubility in other solvents[ which? ] | reacts with most solvents |
Structure | |
K2SO4 motif | |
Tetrahedral | |
0 D | |
Hazards | |
Occupational safety and health (OHS/OSH): | |
Main hazards | Oxidizer |
GHS labelling: | |
![]() | |
Danger [1] | |
H272 [1] | |
P210, P220, P221, P280, P370+P378, P501 [1] | |
Flash point | non-combustible |
Safety data sheet (SDS) | External SDS |
Related compounds | |
Other anions | K2MnO4 K2CrO4 K2RuO4 |
Other cations | BaFeO4 Na2FeO4 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Potassium ferrate is an inorganic compound with the formula K2FeO4. It is the potassium salt of ferric acid. Potassium ferrate is a powerful oxidizing agent with applications in green chemistry, organic synthesis, and cathode technology.
Generally, there are three ways to produce hexavalent iron: dry oxidation, wet oxidation, and electrochemical synthesis. [2] The methods used to produce potassium ferrate are similar to those used to produce sodium ferrate and barium ferrate.
The dry oxidation method entails heating or melting iron oxides in an alkaline, oxygenated environment. The combination of high temperature (200 °C - 800 °C) and oxygen presents an explosion hazard that has led many researchers to believe this method of production is not suitable from a safety viewpoint, although many attempts have been made to overcome this problem. [2] [3]
In the wet oxidation method, K2FeO4 is prepared by oxidizing an alkaline solution of an iron(III) salt. Generally, this method employs either ferrous (FeII) or ferric (FeIII) salts as the source of iron ions, calcium, sodium hypochlorite (Ca(ClO)2, NaClO), sodium thiosulfate (Na2S2O3) or chlorine (Cl2) as oxidizing agents and, finally, sodium hydroxide, sodium carbonate (NaOH, NaCO3) or potassium hydroxide (KOH) to increase the pH of the solution. [4] [5] [6] For example:
3 ClO− + 3 Fe(OH)3(H2O)3 + 4 K+ + 4 OH− → 3 Cl− + 2 K2FeO4 + 11 H2O
Electrochemical methods used to synthesize potassium ferrate usually consist of an iron anode which electrolyzes a KOH solution. [3]
Potassium ferrate is a dark purple crystalline solid that dissolves in water to form a reddish-purple solution. The salt is paramagnetic and is isostructural with K2MnO4, K2SO4, and K2CrO4. The solid consists of K+ and the tetrahedral FeO2−4 anion, with Fe-O distances of 1.66 Å. [7] Potassium ferrate decomposes rapidly in neutral and acidic water, e.g.: [8]
In alkaline solution and as a dry solid, K2FeO4 is stable. Under the acidic conditions, the oxidation–reduction potential of the ferrate(VI) ions (2.2 V) is greater than that of ozone (2.0 V). [9]
Like sodium ferrate, K2FeO4 generally does not generate environmentally toxic by-products and can be used in water treatment processes. [2] It can act as:
In addition, potassium ferrate can be used as a bleeding stopper for fresh wounds. [10] [11] In organic synthesis, K2FeO4 oxidizes primary alcohols. [12] K2FeO4 has also attracted attention as a potential cathode material in a "super iron battery." [13]
Stabilised forms of potassium ferrate have been proposed for the removal of transuranium elements, both dissolved and suspended, from aqueous solutions. [14] Tonnage quantities were proposed to help remediate the effects of the Chernobyl disaster in Belarus [ citation needed ]. This new technique was successfully applied for the removal of a broad range of heavy metals. Work on the use of potassium ferrate precipitation of transuranium elements and heavy metals was carried out in the Laboratories of IC Technologies Inc. in partnership with ADC Laboratories, in 1987 though 1992. The removal of the transuranium elements was demonstrated on samples from various Dept. of Energy nuclear sites in the USA.[ citation needed ]
Because the side products of its redox reactions are rust-like iron oxides, K2FeO4 has been described as an "environmentally friendly" oxidant. In contrast, related oxidants such as chromates are considered environmentally hazardous. [15]
In 1702, Georg Ernst Stahl (1660 – 1734) observed that the ignition product of potassium nitrate (saltpetre) and iron powder displayed a red-purple color in an aqueous solution, which was eventually attributed to hexavalent potassium ferrate. Eckenberg and Becquerel in 1834 reported that a red-purple color appeared during heating of a mixture of potassium hydroxide and iron ore. In 1840, Edmond Frémy (1814 – 1894) discovered that fusion of potassium hydroxide and iron(III) oxide in air produced a high-capacity iron compound that was soluble in water: [3]
Hydroxide is a diatomic anion with chemical formula OH−. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. It functions as a base, a ligand, a nucleophile, and a catalyst. The hydroxide ion forms salts, some of which dissociate in aqueous solution, liberating solvated hydroxide ions. Sodium hydroxide is a multi-million-ton per annum commodity chemical. The corresponding electrically neutral compound HO• is the hydroxyl radical. The corresponding covalently bound group –OH of atoms is the hydroxy group. Both the hydroxide ion and hydroxy group are nucleophiles and can act as catalysts in organic chemistry.
In chemistry, a reducing agent is a chemical species that "donates" an electron to an electron recipient.
Sodium hypochlorite is an alkaline inorganic chemical compound with the formula NaOCl. It is commonly known in a dilute aqueous solution as bleach or chlorine bleach. It is the sodium salt of hypochlorous acid, consisting of sodium cations and hypochlorite anions.
Potassium hydroxide is an inorganic compound with the formula KOH, and is commonly called caustic potash.
Potassium permanganate is an inorganic compound with the chemical formula KMnO4. It is a purplish-black crystalline salt, that dissolves in water as K+ and MnO−
4, an intensely pink to purple solution.
Chromate salts contain the chromate anion, CrO2−
4. Dichromate salts contain the dichromate anion, Cr
2O2−
7. They are oxyanions of chromium in the +6 oxidation state and are moderately strong oxidizing agents. In an aqueous solution, chromate and dichromate ions can be interconvertible.
A permanganate is a chemical compound with the manganate(VII) ion, MnO−
4, the conjugate base of permanganic acid. Because the manganese atom has a +7 oxidation state, the permanganate(VII) ion is a strong oxidising agent. The ion is a transition metal ion with a tetrahedral structure. Permanganate solutions are purple in colour and are stable in neutral or slightly alkaline media. The exact chemical reaction depends on the carbon-containing reactants present and the oxidant used. For example, trichloroethane (C2H3Cl3) is oxidised by permanganate ions to form carbon dioxide (CO2), manganese dioxide (MnO2), hydrogen ions (H+), and chloride ions (Cl−).
In inorganic nomenclature, a manganate is any negatively charged molecular entity with manganese as the central atom. However, the name is usually used to refer to the tetraoxidomanganate(2−) anion, MnO2−
4, also known as manganate(VI) because it contains manganese in the +6 oxidation state. Manganates are the only known manganese(VI) compounds.
Potassium manganate is the inorganic compound with the formula K2MnO4. This green-colored salt is an intermediate in the industrial synthesis of potassium permanganate, a common chemical. Occasionally, potassium manganate and potassium permanganate are confused, but each compound's properties are distinct.
Ferrate(VI) is the inorganic anion with the chemical formula [FeO4]2−. It is photosensitive, contributes a pale violet colour to compounds and solutions containing it and is one of the strongest water-stable oxidizing species known. Although it is classified as a weak base, concentrated solutions containing ferrate(VI) are corrosive and attack the skin and are only stable at high pH. It is similar to the somewhat more stable permanganate.
Ruthenium tetroxide is the inorganic compound with the formula RuO4. It is a yellow volatile solid that melts near room temperature. It has the odor of ozone. Samples are typically black due to impurities. The analogous OsO4 is more widely used and better known. It is also the anhydride of hyperruthenic acid (H2RuO5). One of the few solvents in which RuO4 forms stable solutions is CCl4.
Potassium hypomanganate is the inorganic compound with the formula K3MnO4. Also known as potassium manganate(V), this bright blue solid is a rare example of a salt with the hypomanganate or manganate(V) anion, where the manganese atom is in the +5 oxidation state. It is an intermediate in the production of potassium permanganate and the industrially most important Mn(V) compound.
Iron(III) nitrate, or ferric nitrate, is the name used for a series of inorganic compounds with the formula Fe(NO3)3.(H2O)n. Most common is the nonahydrate Fe(NO3)3.(H2O)9. The hydrates are all pale colored, water-soluble paramagnetic salts.
Chromium compounds are compounds containing the element chromium (Cr). Chromium is a member of group 6 of the transition metals. The +3 and +6 states occur most commonly within chromium compounds, followed by +2; charges of +1, +4 and +5 for chromium are rare, but do nevertheless occasionally exist.
Iron shows the characteristic chemical properties of the transition metals, namely the ability to form variable oxidation states differing by steps of one and a very large coordination and organometallic chemistry: indeed, it was the discovery of an iron compound, ferrocene, that revolutionalized the latter field in the 1950s. Iron is sometimes considered as a prototype for the entire block of transition metals, due to its abundance and the immense role it has played in the technological progress of humanity. Its 26 electrons are arranged in the configuration [Ar]3d64s2, of which the 3d and 4s electrons are relatively close in energy, and thus it can lose a variable number of electrons and there is no clear point where further ionization becomes unprofitable.
Sodium permanganate is the inorganic compound with the formula NaMnO4. It is closely related to the more commonly encountered potassium permanganate, but it is generally less desirable, because it is more expensive to produce. It is mainly available as the monohydrate. This salt absorbs water from the atmosphere and has a low melting point. Being about 15 times more soluble than KMnO4, sodium permanganate finds some applications where very high concentrations of MnO4− are sought.
Barium ferrate is the chemical compound of formula BaFeO4. This is a rare compound containing iron in the +6 oxidation state. The ferrate(VI) ion has two unpaired electrons, making it paramagnetic. It is isostructural with BaSO4, and contains the tetrahedral [FeO4]2− anion.
Sodium chromate is the inorganic compound with the formula Na2CrO4. It exists as a yellow hygroscopic solid, which can form tetra-, hexa-, and decahydrates. It is an intermediate in the extraction of chromium from its ores.
Ferrate loosely refers to a material that can be viewed as containing anionic iron complexes. Examples include tetrachloroferrate ([FeCl4]2−), oxyanions (FeO2−
4), tetracarbonylferrate ([Fe(CO)4]2−), the organoferrates. The term ferrate derives from the Latin word for iron, ferrum. Some ferrates are called super-iron by some and have uses in battery applications and as an oxidizer. It can be used to clean water safely from a wide range of pollutants, including viruses, microbes, arsenic, sulfur-containing compounds, cyanides and other nitrogen-containing contaminants, many organic compounds, and algae.
Sodium ferrate is a chemical compound with the formula Na2FeO4. It is a sodium salt of ferric acid that is very difficult to obtain. In most iron compounds, the metal has an oxidation state of +2 or +3. Ferric acid, with an oxidation state of +6, is extremely unstable and does not exist under normal conditions. Therefore, its salts, such as sodium ferrate, also tend to be unstable. Due to its high oxidation state, FeO42- is a potent oxidizing agent.