Potassium oxide

Last updated
Potassium oxide
Potassium Oxide spacefilling model Potassium-oxide-3D-vdW.png
Potassium Oxide spacefilling model
Names
IUPAC name
potassium oxide
Systematic IUPAC name
potassium oxidopotassium
Other names
potash, dipotassium oxide
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.032.012 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 235-227-6
MeSH Potassium+oxide
PubChem CID
UNII
UN number 2033
  • InChI=1S/2K.O X mark.svgN
    Key: NOTVAPJNGZMVSD-UHFFFAOYSA-N X mark.svgN
  • O([K])[K]
Properties
K2O
Molar mass 94.196 g·mol−1
AppearancePale yellow solid
Odor Odorless
Density 2.32 g/cm3 (20 °C) [1]
2.13 g/cm3 (24 °C) [2]
Melting point 740 °C (1,360 °F; 1,010 K) [2]
Reacts [1] forming KOH
Solubility Soluble in diethyl ether [2]
Structure
Antifluorite cubic, cF12 [3]
Fm3m, No. 225 [3]
a = 6.436 Å [3]
α = 90°, β = 90°, γ = 90°
Tetrahedral (K+)
Cubic (O2−)
Thermochemistry
83.62 J/mol·K [4]
Std molar
entropy
(S298)
94.03 J/mol·K [4]
−363.17 kJ/mol [1] [4]
−322.1 kJ/mol [1]
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Corrosive, reacts violently with water
GHS labelling:
GHS-pictogram-acid.svg
Danger
H314
P260, P264, P280, P301+P330+P331, P303+P361+P353, P304+P340, P305+P351+P338, P310, P321, P363, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazard W: Reacts with water in an unusual or dangerous manner. E.g. sodium, sulfuric acid
3
0
1
W
Safety data sheet (SDS) ICSC 0769
Related compounds
Other anions
Potassium sulfide
Potassium selenide
Potassium telluride
Potassium polonide
Other cations
Lithium oxide
Sodium oxide
Rubidium oxide
Caesium oxide
Related potassium oxides
Potassium peroxide
Potassium superoxide
Potassium ozonide
Related compounds
Potassium hydroxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Potassium oxide (K2 O) is an ionic compound of potassium and oxygen. It is a base. This pale yellow solid is the simplest oxide of potassium. It is a highly reactive compound that is rarely encountered. Some industrial materials, such as fertilizers and cements, are assayed assuming the percent composition that would be equivalent to K2O.

Contents

Production

Potassium oxide is produced from the reaction of oxygen and potassium; this reaction affords potassium peroxide, K2O2. Treatment of the peroxide with potassium produces the oxide: [5]

K2O2 + 2 K → 2 K2O

Alternatively and more conveniently, K2O is synthesized by heating potassium nitrate with metallic potassium:

2 KNO3 + 10 K → 6 K2O + N2

Other possibility is to heat potassium peroxide at 500 °C which decomposes at that temperature giving pure potassium oxide and oxygen.

2 K2O2 → 2 K2O + O2

Potassium hydroxide cannot be further dehydrated to the oxide but it can react with molten potassium to produce it, releasing hydrogen as a byproduct.

2 KOH + 2 K ⇌ 2 K2O + H2

Properties and reactions

K2O crystallises in the antifluorite structure. In this motif the positions of the anions and cations are reversed relative to their positions in CaF2, with potassium ions coordinated to 4 oxide ions and oxide ions coordinated to 8 potassium. [6] [7] K2O is a basic oxide and reacts with water violently to produce the caustic potassium hydroxide. It is deliquescent and will absorb water from the atmosphere, initiating this vigorous reaction.

Term use in industry

The chemical formula K2O (or simply 'K') is used in several industrial contexts: the N-P-K numbers for fertilizers, in cement formulas, and in glassmaking formulas. Potassium oxide is often not used directly in these products, but the amount of potassium is reported in terms of the K2O equivalent for whatever type of potash was used, such as potassium carbonate. For example, potassium oxide is about 83% potassium by weight, while potassium chloride is only 52%. Potassium chloride provides less potassium than an equal amount of potassium oxide. Thus, if a fertilizer is 30% potassium chloride by weight, its standard potassium rating, based on potassium oxide, would be only 18.8%.

Related Research Articles

<span class="mw-page-title-main">Alkali metal</span> Group of highly reactive chemical elements

The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), and francium (Fr). Together with hydrogen they constitute group 1, which lies in the s-block of the periodic table. All alkali metals have their outermost electron in an s-orbital: this shared electron configuration results in their having very similar characteristic properties. Indeed, the alkali metals provide the best example of group trends in properties in the periodic table, with elements exhibiting well-characterised homologous behaviour. This family of elements is also known as the lithium family after its leading element.

<span class="mw-page-title-main">Potassium</span> Chemical element with atomic number 19 (K)

Potassium is a chemical element; it has symbol K and atomic number 19. It is a silvery white metal that is soft enough to easily cut with a knife. Potassium metal reacts rapidly with atmospheric oxygen to form flaky white potassium peroxide in only seconds of exposure. It was first isolated from potash, the ashes of plants, from which its name derives. In the periodic table, potassium is one of the alkali metals, all of which have a single valence electron in the outer electron shell, which is easily removed to create an ion with a positive charge. In nature, potassium occurs only in ionic salts. Elemental potassium reacts vigorously with water, generating sufficient heat to ignite hydrogen emitted in the reaction, and burning with a lilac-colored flame. It is found dissolved in seawater, and occurs in many minerals such as orthoclase, a common constituent of granites and other igneous rocks.

<span class="mw-page-title-main">Sodium cyanide</span> Toxic chemical compound (NaCN)

Sodium cyanide is a compound with the formula NaCN and the structure Na+C≡N. It is a white, water-soluble solid. Cyanide has a high affinity for metals, which leads to the high toxicity of this salt. Its main application, in gold mining, also exploits its high reactivity toward metals. It is a moderately strong base.

<span class="mw-page-title-main">Manganese dioxide</span> Chemical compound

Manganese dioxide is the inorganic compound with the formula MnO
2
. This blackish or brown solid occurs naturally as the mineral pyrolusite, which is the main ore of manganese and a component of manganese nodules. The principal use for MnO
2
is for dry-cell batteries, such as the alkaline battery and the zinc–carbon battery. MnO
2
is also used as a pigment and as a precursor to other manganese compounds, such as KMnO
4
. It is used as a reagent in organic synthesis, for example, for the oxidation of allylic alcohols. MnO
2
has an α-polymorph that can incorporate a variety of atoms in the "tunnels" or "channels" between the manganese oxide octahedra. There is considerable interest in α-MnO
2
as a possible cathode for lithium-ion batteries.

In chemistry, a reactivity series (or reactivity series of elements) is an empirical, calculated, and structurally analytical progression of a series of metals, arranged by their "reactivity" from highest to lowest. It is used to summarize information about the reactions of metals with acids and water, single displacement reactions and the extraction of metals from their ores.

Cuprates are a class of compounds that contain copper (Cu) atom(s) in an anion. They can be broadly categorized into two main types:

<span class="mw-page-title-main">Copper(II) chloride</span> Chemical compound

Copper(II) chloride, also known as cupric chloride, is an inorganic compound with the chemical formula CuCl2. The monoclinic yellowish-brown anhydrous form slowly absorbs moisture to form the orthorhombic blue-green dihydrate CuCl2·2H2O, with two water molecules of hydration. It is industrially produced for use as a co-catalyst in the Wacker process.

<span class="mw-page-title-main">Potassium superoxide</span> Chemical compound

Potassium superoxide is an inorganic compound with the formula KO2. It is a yellow paramagnetic solid that decomposes in moist air. It is a rare example of a stable salt of the superoxide anion. It is used as a CO2 scrubber, H2O dehumidifier, and O2 generator in rebreathers, spacecraft, submarines, and spacesuits.

Sodium oxide is a chemical compound with the formula Na2O. It is used in ceramics and glasses. It is a white solid but the compound is rarely encountered. Instead "sodium oxide" is used to describe components of various materials such as glasses and fertilizers which contain oxides that include sodium and other elements. Sodium oxide is a component.

<span class="mw-page-title-main">Sodium peroxide</span> Chemical compound

Sodium peroxide is an inorganic compound with the formula Na2O2. This yellowish solid is the product of sodium ignited in excess oxygen. It is a strong base. This metal peroxide exists in several hydrates and peroxyhydrates including Na2O2·2H2O2·4H2O, Na2O2·2H2O, Na2O2·2H2O2, and Na2O2·8H2O. The octahydrate, which is simple to prepare, is white, in contrast to the anhydrous material.

<span class="mw-page-title-main">Potassium peroxide</span> Chemical compound

Potassium peroxide is an inorganic compound with the molecular formula K2O2. It is formed as potassium reacts with oxygen in the air, along with potassium oxide (K2O) and potassium superoxide (KO2).

<span class="mw-page-title-main">Silver oxide</span> Chemical compound

Silver oxide is the chemical compound with the formula Ag2O. It is a fine black or dark brown powder that is used to prepare other silver compounds.

Basic oxides are oxides that show basic properties, in opposition to acidic oxides. A basic oxide can either react with water to form a base, or with an acid to form a salt and water in a neutralization reaction.

Potassium hypomanganate is the inorganic compound with the formula K3MnO4. Also known as potassium manganate(V), this bright blue solid is a rare example of a salt with the hypomanganate or manganate(V) anion, where the manganese atom is in the +5 oxidation state. It is an intermediate in the production of potassium permanganate and the industrially most important Mn(V) compound.

<span class="mw-page-title-main">Potassium sulfide</span> Chemical compound

Potassium sulfide is an inorganic compound with the formula K2S. The colourless solid is rarely encountered, because it reacts readily with water, a reaction that affords potassium hydrosulfide (KSH) and potassium hydroxide (KOH). Most commonly, the term potassium sulfide refers loosely to this mixture, not the anhydrous solid.

<span class="mw-page-title-main">Gallium(III) chloride</span> Chemical compound

Gallium(III) chloride is an inorganic chemical compound with the formula GaCl3 which forms a monohydrate, GaCl3·H2O. Solid gallium(III) chloride is a deliquescent white solid and exists as a dimer with the formula Ga2Cl6. It is colourless and soluble in virtually all solvents, even alkanes, which is truly unusual for a metal halide. It is the main precursor to most derivatives of gallium and a reagent in organic synthesis.

<span class="mw-page-title-main">Thorium compounds</span> Chemical compounds

Many compounds of thorium are known: this is because thorium and uranium are the most stable and accessible actinides and are the only actinides that can be studied safely and legally in bulk in a normal laboratory. As such, they have the best-known chemistry of the actinides, along with that of plutonium, as the self-heating and radiation from them is not enough to cause radiolysis of chemical bonds as it is for the other actinides. While the later actinides from americium onwards are predominantly trivalent and behave more similarly to the corresponding lanthanides, as one would expect from periodic trends, the early actinides up to plutonium have relativistically destabilised and hence delocalised 5f and 6d electrons that participate in chemistry in a similar way to the early transition metals of group 3 through 8: thus, all their valence electrons can participate in chemical reactions, although this is not common for neptunium and plutonium.

Neptunium compounds are compounds containing the element neptunium (Np). Neptunium has five ionic oxidation states ranging from +3 to +7 when forming chemical compounds, which can be simultaneously observed in solutions. It is the heaviest actinide that can lose all its valence electrons in a stable compound. The most stable state in solution is +5, but the valence +4 is preferred in solid neptunium compounds. Neptunium metal is very reactive. Ions of neptunium are prone to hydrolysis and formation of coordination compounds.

<span class="mw-page-title-main">Technetium(IV) oxide</span> Chemical compound

Technetium(IV) oxide, also known as technetium dioxide, is a chemical compound with the formula TcO2 which forms the dihydrate, TcO2·2H2O, which is also known as technetium(IV) hydroxide. It is a radioactive black solid which slowly oxidizes in air.

References

  1. 1 2 3 4 Anatolievich, Kiper Ruslan. "potassium oxide". chemister.ru. Retrieved 2014-07-04.
  2. 1 2 3 Lide, David R., ed. (2009). CRC Handbook of Chemistry and Physics (90th ed.). Boca Raton, Florida: CRC Press. ISBN   978-1-4200-9084-0.
  3. 1 2 3 Wyckoff, Ralph W.G. (1935). The Structure of Crystals (2nd ed.). Reinhold Publishing Corp. p. 25.{{cite book}}: |work= ignored (help)
  4. 1 2 3 Dipotassium oxide in Linstrom, Peter J.; Mallard, William G. (eds.); NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg (MD) (retrieved 2014-07-04)
  5. Holleman, A. F.; Wiberg, E. "Inorganic Chemistry" Academic Press: San Diego, 2001. ISBN   0-12-352651-5.
  6. Zintl, E.; Harder, A.; Dauth B. (1934). "Gitterstruktur der oxide, sulfide, selenide und telluride des lithiums, natriums und kaliums". Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie. 40 (8): 588–93. doi:10.1002/bbpc.19340400811.
  7. Wells, A.F. (1984) Structural Inorganic Chemistry, Oxford: Clarendon Press. ISBN   0-19-855370-6.

Commons-logo.svg Media related to Potassium oxide at Wikimedia Commons