Nickel(III) oxide

Last updated
Nickel (III) oxide
Nickel (III) oxide powder.jpg
Names
IUPAC name
Nickel (III) oxide
Other names
Nickel sesquioxide,
nickel trioxide
Identifiers
ECHA InfoCard 100.013.835 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 215-217-8
PubChem CID
RTECS number
  • QR8420000
UNII
Properties
Ni2O3
Molar mass 165.39 g/mol
Appearanceblack-dark gray solid
Density 4.84 g/cm3
Melting point 600 °C (1,112 °F; 873 K) (decomposes)
negligible
Hazards
NFPA 704 (fire diamond)
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
0
0
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Nickel (III) oxide is the inorganic compound with the formula Ni2O3. It is not well characterized, [1] and is sometimes referred to as black nickel oxide. Traces of Ni2O3 on nickel surfaces have been mentioned. [2] [3]

Nickel (III) oxide has been studied theoretically since the early 1930s, [4] supporting its unstable nature at standard temperatures. A nanostructured pure phase of the material was synthesized and stabilized for the first time in 2015 from the reaction of nickel(II) nitrate with sodium hypochlorite and characterized using powder X-ray diffraction and electron microscopy. [5]

Related Research Articles

<span class="mw-page-title-main">Gadolinium</span> Chemical element with atomic number 64 (Gd)

Gadolinium is a chemical element; it has symbol Gd and atomic number 64. Gadolinium is a silvery-white metal when oxidation is removed. It is a malleable and ductile rare-earth element. Gadolinium reacts with atmospheric oxygen or moisture slowly to form a black coating. Gadolinium below its Curie point of 20 °C (68 °F) is ferromagnetic, with an attraction to a magnetic field higher than that of nickel. Above this temperature it is the most paramagnetic element. It is found in nature only in an oxidized form. When separated, it usually has impurities of the other rare earths because of their similar chemical properties.

<span class="mw-page-title-main">Iridium</span> Chemical element with atomic number 77 (Ir)

Iridium is a chemical element; it has symbol Ir and atomic number 77. A very hard, brittle, silvery-white transition metal of the platinum group, it is considered the second-densest naturally occurring metal with a density of 22.56 g/cm3 (0.815 lb/cu in) as defined by experimental X-ray crystallography. 191Ir and 193Ir are the only two naturally occurring isotopes of iridium, as well as the only stable isotopes; the latter is the more abundant. It is one of the most corrosion-resistant metals, even at temperatures as high as 2,000 °C (3,630 °F).

<span class="mw-page-title-main">Lanthanum</span> Chemical element with atomic number 57 (La)

Lanthanum is a chemical element; it has symbol La and atomic number 57. It is a soft, ductile, silvery-white metal that tarnishes slowly when exposed to air. It is the eponym of the lanthanide series, a group of 15 similar elements between lanthanum and lutetium in the periodic table, of which lanthanum is the first and the prototype. Lanthanum is traditionally counted among the rare earth elements. Like most other rare earth elements, its usual oxidation state is +3, although some compounds are known with an oxidation state of +2. Lanthanum has no biological role in humans but is essential to some bacteria. It is not particularly toxic to humans but does show some antimicrobial activity.

<span class="mw-page-title-main">Manganese</span> Chemical element with atomic number 25 (Mn)

Manganese is a chemical element; it has symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese was first isolated in the 1770s. Manganese is a transition metal with a multifaceted array of industrial alloy uses, particularly in stainless steels. It improves strength, workability, and resistance to wear. Manganese oxide is used as an oxidising agent; as a rubber additive; and in glass making, fertilisers, and ceramics. Manganese sulfate can be used as a fungicide.

<span class="mw-page-title-main">Nickel</span> Chemical element with atomic number 28 (Ni)

Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slow to react with air under standard conditions because a passivation layer of nickel oxide forms on the surface that prevents further corrosion. Even so, pure native nickel is found in Earth's crust only in tiny amounts, usually in ultramafic rocks, and in the interiors of larger nickel–iron meteorites that were not exposed to oxygen when outside Earth's atmosphere.

<span class="mw-page-title-main">Samarium</span> Chemical element with atomic number 62 (Sm)

Samarium is a chemical element; it has symbol Sm and atomic number 62. It is a moderately hard silvery metal that slowly oxidizes in air. Being a typical member of the lanthanide series, samarium usually has the oxidation state +3. Compounds of samarium(II) are also known, most notably the monoxide SmO, monochalcogenides SmS, SmSe and SmTe, as well as samarium(II) iodide.

<span class="mw-page-title-main">Terbium</span> Chemical element with atomic number 65 (Tb)

Terbium is a chemical element; it has the symbol Tb and atomic number 65. It is a silvery-white, rare earth metal that is malleable, and ductile. The ninth member of the lanthanide series, terbium is a fairly electropositive metal that reacts with water, evolving hydrogen gas. Terbium is never found in nature as a free element, but it is contained in many minerals, including cerite, gadolinite, monazite, xenotime and euxenite.

Solid-state chemistry, also sometimes referred as materials chemistry, is the study of the synthesis, structure, and properties of solid phase materials. It therefore has a strong overlap with solid-state physics, mineralogy, crystallography, ceramics, metallurgy, thermodynamics, materials science and electronics with a focus on the synthesis of novel materials and their characterization. A diverse range of synthetic techniques, such as the ceramic method and chemical vapour depostion, make solid-state materials. Solids can be classified as crystalline or amorphous on basis of the nature of order present in the arrangement of their constituent particles. Their elemental compositions, microstructures, and physical properties can be characterized through a variety of analytical methods.

<span class="mw-page-title-main">Surface science</span> Study of physical and chemical phenomena that occur at the interface of two phases

Surface science is the study of physical and chemical phenomena that occur at the interface of two phases, including solid–liquid interfaces, solid–gas interfaces, solid–vacuum interfaces, and liquid–gas interfaces. It includes the fields of surface chemistry and surface physics. Some related practical applications are classed as surface engineering. The science encompasses concepts such as heterogeneous catalysis, semiconductor device fabrication, fuel cells, self-assembled monolayers, and adhesives. Surface science is closely related to interface and colloid science. Interfacial chemistry and physics are common subjects for both. The methods are different. In addition, interface and colloid science studies macroscopic phenomena that occur in heterogeneous systems due to peculiarities of interfaces.

<span class="mw-page-title-main">Thorium dioxide</span> Chemical compound

Thorium dioxide (ThO2), also called thorium(IV) oxide, is a crystalline solid, often white or yellow in colour. Also known as thoria, it is mainly a by-product of lanthanide and uranium production. Thorianite is the name of the mineralogical form of thorium dioxide. It is moderately rare and crystallizes in an isometric system. The melting point of thorium oxide is 3300 °C – the highest of all known oxides. Only a few elements (including tungsten and carbon) and a few compounds (including tantalum carbide) have higher melting points. All thorium compounds, including the dioxide, are radioactive because there are no stable isotopes of thorium.

<span class="mw-page-title-main">Xenon tetrafluoride</span> Chemical compound

Xenon tetrafluoride is a chemical compound with chemical formula XeF
4
. It was the first discovered binary compound of a noble gas. It is produced by the chemical reaction of xenon with fluorine:

<span class="mw-page-title-main">Uranium trioxide</span> Chemical compound

Uranium trioxide (UO3), also called uranyl oxide, uranium(VI) oxide, and uranic oxide, is the hexavalent oxide of uranium. The solid may be obtained by heating uranyl nitrate to 400 °C. Its most commonly encountered polymorph is amorphous UO3.

<span class="mw-page-title-main">Indium(III) oxide</span> Chemical compound

Indium(III) oxide (In2O3) is a chemical compound, an amphoteric oxide of indium.

<span class="mw-page-title-main">Rhodium(III) oxide</span> Chemical compound

Rhodium(III) oxide (or Rhodium sesquioxide) is the inorganic compound with the formula Rh2O3. It is a gray solid that is insoluble in ordinary solvents.

In chemistry, a (redox) non-innocent ligand is a ligand in a metal complex where the oxidation state is not clear. Typically, complexes containing non-innocent ligands are redox active at mild potentials. The concept assumes that redox reactions in metal complexes are either metal or ligand localized, which is a simplification, albeit a useful one.

<span class="mw-page-title-main">Dioxirane</span> Chemical compound

In chemistry, dioxirane is an organic compound with formula CH
2
O
2
. The molecule consists of a ring with one methylene and two oxygen atoms. It is of interest as the smallest cyclic organic peroxide, but otherwise it is of little practical value.

<span class="mw-page-title-main">Graphite oxide</span> Compound of carbon, oxygen, and hydrogen

Graphite oxide (GO), formerly called graphitic oxide or graphitic acid, is a compound of carbon, oxygen, and hydrogen in variable ratios, obtained by treating graphite with strong oxidizers and acids for resolving of extra metals. The maximally oxidized bulk product is a yellow solid with C:O ratio between 2.1 and 2.9, that retains the layer structure of graphite but with a much larger and irregular spacing.

<span class="mw-page-title-main">Abhik Ghosh</span> Indian chemist

Abhik Ghosh is an Indian inorganic chemist and materials scientist and a professor of chemistry at UiT – The Arctic University of Norway in Tromsø, Norway.

In chemistry, compounds of palladium(III) feature the noble metal palladium in the unusual +3 oxidation state (in most of its compounds, palladium has the oxidation state II). Compounds of Pd(III) occur in mononuclear and dinuclear forms. Palladium(III) is most often invoked, not observed in mechanistic organometallic chemistry.

Curium compounds are compounds containing the element curium (Cm). Curium usually forms compounds in the +3 oxidation state, although compounds with curium in the +4, +5 and +6 oxidation states are also known.

References

  1. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  2. Aggarwal, P. S.; Goswami, A. (1961). "An oxide of tervalent nickel". The Journal of Physical Chemistry. 65 (11): 2105. doi:10.1021/j100828a503. ISSN   0022-3654.
  3. Kang, Jin-Kyu; Rhee, Shi-Woo (2001). "Chemical vapor deposition of nickel oxide films from Ni(C5H5)2/O2". Thin Solid Films. 391 (1): 57–61. Bibcode:2001TSF...391...57K. doi:10.1016/S0040-6090(01)00962-2.
  4. Cairns, R. W.; Ott, Emil (February 1933). "X-Ray Studies of the System Nickel—Oxygen—Water. I. Nickelous Oxide and Hydroxide 1". Journal of the American Chemical Society. 55 (2): 527–533. doi:10.1021/ja01329a013. ISSN   0002-7863.
  5. Dey, Sayan; Bhattacharjee, Swarupananda; Chaudhuri, Mahua Ghosh; Bose, Raj Shekhar; Halder, Suman; Ghosh, Chandan Kr (2015-06-18). "Synthesis of pure nickel(III) oxide nanoparticles at room temperature for Cr(VI) ion removal". RSC Advances. 5 (67): 54717–54726. Bibcode:2015RSCAd...554717D. doi:10.1039/C5RA05810D. ISSN   2046-2069.