Nickel(II) titanate

Last updated
Nickel(II) titanate
NiTiO3.png
Names
IUPAC name
Nickel(IV) titanate
Identifiers
3D model (JSmol)
ECHA InfoCard 100.031.647 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 234-825-4
PubChem CID
RTECS number
  • QS0635000
  • InChI=1S/Ni.3O.Ti/q+2;3*-2;+4
    Key: KJLFZWJDCDJCFB-UHFFFAOYSA-N
  • [O-2].[O-2].[O-2].[Ti+4].[Ni+2]
Properties
NiTiO3
Molar mass 154.61 g/mol
Appearanceyellow powder
Density 4.44 g/cm3
0.0396 g/100 mL
Hazards
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
3
0
0
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Nickel(II) titanate, also known as nickel titanium oxide, is an inorganic compound with the chemical formula NiTiO3. [1] It is a coordination compound between nickel(II), titanium(IV) and oxide ions. It has the appearance of a yellow powder. Nickel(II) titanate has been used as a catalyst for toluene oxidation. [2]

Contents

Molecular and crystal structure

Nickel(II) titanate crystallizes at 600 °C [2] and is stable at room temperature and normal pressure in an ilmenite structure with rhombohedral R3 symmetry. [3] Nickel(II) titanate's rhombohedral structure has layers of Ni and Ti alternate along the rhombohedral axis with O layers between them. The XRD data supports nickel(II) titanate's ilmenite structure with its rhombohedral symmetry. [2] Other descriptions of nickel(II) titanite's Illemite structure consists of a pseudo close packed hexagonal array of O2− ions with two thirds occupied by an ordered hexagonal like cation. [4] The Average crystallites size for nickel(II) titanate was estimated at 42 nm with lattice constants of a = 5.032 Å, b = 5.032 Å, c = 4.753 Å. [4] The structure was established by using X-ray power intensities. [3]

Synthesis

There are several methods of synthesis for nickel(II) titanate. The first method involves nickel(II) titanate's melting temperature of over 500 °C at which its precursor decomposes to give nickel(II) titanate as a residue. [2] The second method involved using enthalpy and entropy on the reaction to synthesize nickel(II) titanate through its phase transition. [5]

Nickel(II) titanate was synthesized using the polymeric precursor method. This involved spontaneous combustion of Ti(OCH(CH3)2)4 with Ni(NO3)2·6H2O and C3H7NO2 in a molar ratio of 1:1:20 in isopropyl alcohol solution. [2] The product of nickel(II) titanate was calcinated from the precursor at 600 °C for 3 hours. [2]

Nickel(II) titanate was also formed by heating NiO and TiO2 at 1350 °C for three hours. Then it was then cooled until room temperature. [5]

NiO + TiO2 + (heat) → NiTiO3

Applications

Due to nickel(II) titanate's brilliant yellow color and high UV-vis-NIR reflectance, it has the potential to serve as a pigment for building coating. Ilmenite-type NiTiO3 are well known as functional inorganic materials with wide application in electronic materials, including electrodes of solid fuel cells, gas sensors, chemical catalysts and so on due to their high static dielectric constants, weak magnetism and semiconductivity. [6] NiTiO3 as a semiconductor has excellent catalytic activity due to its absorption bands. [6] Analysis of the band structures and density of states have implied that nickel(II) titanate has immense potential in the areas of high-density data storage, gas sensor data and integration in circuit devices. [6] NiTiO3 has even been utilized as a catalyst in toluene oxidation. [2] Other applications of nickel(II) titanate have yet to be found.

Interesting facts about compound in History

MTiO3 (M= Ni, Fe, Mn) compounds have received attention as possible candidates for multiferroic materials capable of magnetization through application of electric field. [7]

Nickel(II) titanate furthermore has many different names such as nickel titanium oxide; nickelous; titanium nickel oxide; nickel titanium trioxide. [8]

Through an experiment to see if NiTiO3 could serve as a catalyst for toluene oxidation in comparison to NiFe2O4, NiTiO3 achieved greater results than its experimental counterpart in oxidating toluene. [2]

A single-source heterobimetallic complex Ni2Ti2(OEt)2(μ-OEt)6(2,4-pentanedionate)4 was synthesized and underwent thermal decomposition at 500 °C to give NiTiO3 residue. [4]

By doping the NiTiO3 with Ga2O3, the anomalous increase of the electrical conductivity is shifted to lower temperatures. [5]

It is used as a yellow pigment.

Related Research Articles

<span class="mw-page-title-main">Titanium</span> Chemical element, symbol Ti and atomic number 22

Titanium is a chemical element; it has symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion in sea water, aqua regia, and chlorine.

In chemistry, titanate usually refers to inorganic compounds composed of titanium oxides, or oxides containing the titanium element. Together with niobate, titanate salts form the Perovskite group.

<span class="mw-page-title-main">Titanium dioxide</span> Chemical compound

Titanium dioxide, also known as titanium(IV) oxide or titania, is the inorganic compound with the chemical formula TiO
2
. When used as a pigment, it is called titanium white, Pigment White 6 (PW6), or CI 77891. It is a white solid that is insoluble in water, although mineral forms can appear black. As a pigment, it has a wide range of applications, including paint, sunscreen, and food coloring. When used as a food coloring, it has E number E171. World production in 2014 exceeded 9 million tonnes. It has been estimated that titanium dioxide is used in two-thirds of all pigments, and pigments based on the oxide have been valued at a price of $13.2 billion.

<span class="mw-page-title-main">Strontium titanate</span> Chemical compound

Strontium titanate is an oxide of strontium and titanium with the chemical formula SrTiO3. At room temperature, it is a centrosymmetric paraelectric material with a perovskite structure. At low temperatures it approaches a ferroelectric phase transition with a very large dielectric constant ~104 but remains paraelectric down to the lowest temperatures measured as a result of quantum fluctuations, making it a quantum paraelectric. It was long thought to be a wholly artificial material, until 1982 when its natural counterpart—discovered in Siberia and named tausonite—was recognised by the IMA. Tausonite remains an extremely rare mineral in nature, occurring as very tiny crystals. Its most important application has been in its synthesized form wherein it is occasionally encountered as a diamond simulant, in precision optics, in varistors, and in advanced ceramics.

<span class="mw-page-title-main">Titanium tetrachloride</span> Inorganic chemical compound

Titanium tetrachloride is the inorganic compound with the formula TiCl4. It is an important intermediate in the production of titanium metal and the pigment titanium dioxide. TiCl4 is a volatile liquid. Upon contact with humid air, it forms thick clouds of titanium dioxide and hydrochloric acid, a reaction that was formerly exploited for use in smoke machines. It is sometimes referred to as "tickle" or "tickle 4", as a phonetic representation of the symbols of its molecular formula.

In chemistry, a mixed oxide is a somewhat informal name for an oxide that contains cations of more than one chemical element or cations of a single element in several states of oxidation.

<span class="mw-page-title-main">Barium titanate</span> Chemical compound

Barium titanate (BTO) is an inorganic compound with chemical formula BaTiO3. Barium titanate appears white as a powder and is transparent when prepared as large crystals. It is a ferroelectric, pyroelectric, and piezoelectric ceramic material that exhibits the photorefractive effect. It is used in capacitors, electromechanical transducers and nonlinear optics.

<span class="mw-page-title-main">Nickel(II) oxide</span> Chemical compound

Nickel(II) oxide is the chemical compound with the formula NiO. It is the principal oxide of nickel. It is classified as a basic metal oxide. Several million kilograms are produced annually of varying quality, mainly as an intermediate in the production of nickel alloys. The mineralogical form of NiO, bunsenite, is very rare. Other nickel oxides have been claimed, for example: Nickel(III) oxide(Ni
2
O
3
) and NiO
2
, but they have yet to be proven by X-ray crystallography in bulk. Nickel(III) oxide nanoparticles have recently (2015) been characterized using powder X-ray diffraction and electron microscopy.

<span class="mw-page-title-main">Titanium tetrabromide</span> Chemical compound

Titanium tetrabromide is the chemical compound with the formula TiBr4. It is the most volatile transition metal bromide. The properties of TiBr4 are an average of TiCl4 and TiI4. Some key properties of these four-coordinated Ti(IV) species are their high Lewis acidity and their high solubility in nonpolar organic solvents. TiBr4 is diamagnetic, reflecting the d0 configuration of the metal centre.

<span class="mw-page-title-main">Titanium isopropoxide</span> Chemical compound

Titanium isopropoxide, also commonly referred to as titanium tetraisopropoxide or TTIP, is a chemical compound with the formula Ti{OCH(CH3)2}4. This alkoxide of titanium(IV) is used in organic synthesis and materials science. It is a diamagnetic tetrahedral molecule. Titanium isopropoxide is a component of the Sharpless epoxidation, a method for the synthesis of chiral epoxides.

Molybdenum dioxide is the chemical compound with the formula MoO2. It is a violet-colored solid and is a metallic conductor. The mineralogical form of this compound is called tugarinovite, and is only very rarely found. The discovery and early studies of molybdenum dioxide date back to the late 18th and early 19th centuries. One of the notable figures in the history of molybdenum dioxide is the Hungarian chemist Jakob Joseph Winterl (1732-1809). Winterl, who was a professor of chemistry and botany at the University of Budapest, made significant contributions to the understanding of molybdenum compounds. In 1787, he proposed that copper was a compound of nickel, molybdenum, silica, and a volatile substance, showcasing his interest in molybdenum chemistry.

The Becher process is an industrial process used to produce rutile, a form of titanium dioxide, from the ore ilmenite. It is competitive with the chloride process and the sulfate process, which achieve similar net conversions.

<span class="mw-page-title-main">Lithium titanate</span> Chemical compound

Lithium titanates are chemical compounds of lithium, titanium and oxygen. They are mixed oxides and belong to the titanates. The most important lithium titanates are:

<span class="mw-page-title-main">Calcium titanate</span> Chemical compound

Calcium titanate is an inorganic compound with the chemical formula CaTiO3. As a mineral, it is called perovskite, named after Russian mineralogist, L. A. Perovski (1792-1856). It is a colourless, diamagnetic solid, although the mineral is often coloured owing to impurities.

Zinc titanate, also known as zinc titanium oxide, is an inorganic compound existing in three major forms: ZnTiO3 (ZnO-TiO2), Zn2TiO4 (2ZnO-TiO2) and Zn2Ti3O8 (2ZnO-3TiO2). It is used as a regenerable catalyst, a pigment and a sorbent of sulfur compounds at elevated temperatures. It is a white powder that is insoluble in water.

<span class="mw-page-title-main">Calcium copper titanate</span> Chemical compound

Calcium copper titanate (also abbreviated CCTO, for calcium copper titanium oxide) is an inorganic compound with the formula CaCu3Ti4O12. It is noteworthy for its extremely large dielectric constant (effective relative permittivity) of over 10,000 at room temperature.

Sodium bismuth titanate or bismuth sodium titanium oxide (NBT or BNT) is a solid inorganic compound of sodium, bismuth, titanium and oxygen with the chemical formula of Na0.5Bi0.5TiO3 or Bi0.5Na0.5TiO3. This compound adopts the perovskite structure.

Nickel forms a series of mixed oxide compounds which are commonly called nickelates. A nickelate is an anion containing nickel or a salt containing a nickelate anion, or a double compound containing nickel bound to oxygen and other elements. Nickel can be in different or even mixed oxidation states, ranging from +1, +2, +3 to +4. The anions can contain a single nickel ion, or multiple to form a cluster ion. The solid mixed oxide compounds are often ceramics, but can also be metallic. They have a variety of electrical and magnetic properties. Rare-earth elements form a range of perovskite nickelates, in which the properties vary systematically as the rare-earth element changes. Fine tuning of properties is achievable with mixtures of elements, applying stress or pressure, or varying the physical form.

The +4 oxidation state dominates titanium chemistry, but compounds in the +3 oxidation state are also numerous. Commonly, titanium adopts an octahedral coordination geometry in its complexes, but tetrahedral TiCl4 is a notable exception. Because of its high oxidation state, titanium(IV) compounds exhibit a high degree of covalent bonding.

References

  1. University of Akron Chemical Database
  2. 1 2 3 4 5 6 7 8 Traistaru, G.A. (July 2011). "Synthesis and Characterization of NiTiO3 and NiFe2O4 as catalysts for Toluene Oxidation" (PDF). Digest Journal of Nanomaterials and Biostructures.
  3. 1 2 Shirane, Gen; Pickart, S. J.; Ishikawa, Yoshikazu (1959-10-15). "Neutron Diffraction Study of Antiferromagnetic MnTiO3 and NiTiO3". Journal of the Physical Society of Japan. 14 (10): 1352–1360. Bibcode:1959JPSJ...14.1352S. doi:10.1143/JPSJ.14.1352. ISSN   0031-9015.
  4. 1 2 3 Tahir, Asif Ali; Mazhar, Muhammad; Hamid, Mazhar; Wijayantha, K.G. Upul; Molloy, Kieran C. (2009-05-06). "Photooxidation of water by NiTiO3 deposited from single source precursor [Ni2Ti2(OEt)2(μ-OEt)6(acac)4] by AACVD". Dalton Transactions (19): 3674–3680. doi:10.1039/B818765G. ISSN   1477-9234. PMID   19417932.
  5. 1 2 3 Lerch, M.; Laqua, W. (1992-04-01). "Beiträge zu den Eigenschaften von Titanaten mit Ilmenitstruktur. II. Zur Thermodynamik und elektrischen Leitfähigkeit von NiTiO3 und anderen oxidischen Phasen mit Ilmenitstruktur". Zeitschrift für Anorganische und Allgemeine Chemie. 610 (4): 57–63. doi:10.1002/zaac.19926100110. ISSN   1521-3749.
  6. 1 2 3 Zhang, Xiaochao; Lu, Bingqian; Li, Rui; Fan, Caimei; Liang, Zhenhai; Han, Peide (2015-11-01). "Structural, electronic and optical properties of Ilmenite ATiO3 (A=Fe, Co, Ni)". Materials Science in Semiconductor Processing. 39: 6–16. doi:10.1016/j.mssp.2015.04.041.
  7. Varga, Tamas; Droubay, Timothy C.; Bowden, Mark E.; Nachimuthu, Ponnusamy; Shutthanandan, Vaithiyalingam; Bolin, Trudy B.; Shelton, William A.; Chambers, Scott A. (2012-06-30). "Epitaxial growth of NiTiO3 with a distorted ilmenite structure". Thin Solid Films. 520 (17): 5534–5541. Bibcode:2012TSF...520.5534V. doi:10.1016/j.tsf.2012.04.060.
  8. Pubchem. "Nickel titanium oxide | NiO3Ti - PubChem". pubchem.ncbi.nlm.nih.gov. Retrieved 2016-04-29.